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1. Introduction

Time-inconsistency problems of the type first highlighted by Kydland and Prescott (1977) are a domi-
nant feature of the modern macroeconomic policy literature. Whenever expectations of future policy
influence the feasible set of current choices, period-by-period discretionary policymaking will gener-
ically be sub-optimal. This is because successive generations of decisionmakers fail to endogenise
the effects of their current choices on past expectations.1

A general feature of these settings is that all generations can be made better off if some way can
be found to commit to binding policy promises.2 A binding inflation target, for instance, can im-
ply lower inflation expectations and a permanently improved inflation-output trade-off. A binding
promise to limit future wealth taxation can ensure higher contemporary savings. To be effective these
promises do not have to eliminate completely the scope for day-to-day policy choice, but they should
restrict the options available. An inflation-targeting central bank retains operational independence,
but is constrained by its obligation to target inflation.

The current paper takes as given that this sort of institutional commitment is possible, and revisits
the policy question that it implies: How should such promises be designed? This is a non-trivial
normative problem, because each generation of policymakers will have different preferences about
the appropriate promises to make, and to keep, over time. Every generation would prefer that they
themselves should be entirely free from promise-keeping obligations, but that their successors should
be meaningfully restricted.

In this context it is impossible to find a sequence of promises that is recursively optimal: best
for the first policymaker to choose, and best for all subsequent policymakers to adhere to. Choice
must instead satisfy some weaker notion of desirability. The standard approach in the optimal policy
literature is to relax recursivity, and to focus on the choice of promises that is optimal for the model’s
first time period. This is commonly known as Ramsey policy.

This paper sets out an alternative approach. We define and characterise policy when promises are
not chosen to be ‘best’ in any one period, but must satisfy a meaningful desirability criterion at all
times. In direct contrast with Ramsey policy, therefore, we retain recursivity in the choice procedure,
but relax optimality. The criterion that we use in place of optimality is a version of the standard Pareto
principle, taken with respect to the varying preferences of successive generations over promises. A
choice satisfies the Pareto criterion if, when this choice is implemented, there is no other promise
sequence that all current and future policymakers would prefer to switch to. It satisfies the criterion
recursively if this statement remains true indefinitely, as the current period advances.

Our main motivation for developing this choice procedure is that a number of different literatures
have found Ramsey policies to be unappealing. Two distinct issues arise. First, in models of monetary
and fiscal policy it is common for Ramsey promises to induce very different policies in early time
periods from later, even though the underlying state of the economy may not have changed at all.

1We refer to policymakers choosing in different time periods as belonging different ‘generations’, though in practice these
time periods may be arbitrarily close.

2The formal insight that promises can be used to improve inefficient outcomes derives from the influential work of Abreu,
Pearce and Stachetti (1990) on repeated games. There have been many applications in the macroeconomics literature,
including Kocherlakota (1996), Chang (1998) and Phelan and Stachetti (2001).
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Intuitively this is because Ramsey policy will never be constrained by inherited promises in the first
time period, but will subsequently. The associated transition dynamic makes it hard to infer simple
rules of best conduct that could be used to design mandates for policymaking institutions. The
Ramsey-optimal inflation target, for instance, is likely to vary from one time period to another even
when the economy’s state vector does not. This problem has received particular attention in the New
Keynesian literature, where Woodford (1999, 2003) has expressed the need for a ‘timeless’ approach
to policy design, linking promises only to the state of the economy.

The second unappealing feature of Ramsey policy is that it can imply long-run outcomes that are
extremely undesirable from the perspective of later generations. This is most commonly observed
in the dynamic social insurance literature. In a dynamic hidden action model, Thomas and Worrall
(1990) first showed that a Ramsey planner would promise to drive the consumption of almost all
agents to zero over time. This ‘immiseration’ result was extended to general equilibrium in a hidden
information setting by Atkeson and Lucas (1992), and has generated significant attention in the recent
dynamic public finance literature.3 Again, it obtains even though the state of the economy may be
precisely the same in the long run as at the start of time. Influential contributions by Phelan (2006)
and Farhi and Werning (2007) have explored alternative normative criteria that would prevent the
result from going through, in both cases by reducing the extent to which future generations’ welfare
is discounted.

The recursive Pareto approach that we present avoids these two unappealing features of Ramsey
policy by design. First, because the Pareto criterion must continue to apply in every time period, for a
given state of the economy there is no reason why policy should take a different form in early periods
from later. Thus the policy transition can be avoided. Second, because the choice of promises must
satisfy the Pareto principle indefinitely, outcomes that are extremely undesirable for later generations
will not arise.

Our paper defines and characterises the recursive Pareto principle as a way to choose promises.
We find general conditions that guarantee the existence of a policy satisfying the recursive Pareto
criterion, and illustrate the principle via three worked examples drawn from different branches of the
optimal policy literature. These are, first, a linear-quadratic New Keynesian inflation bias problem;
second, a variant of the Chamley (1986) and Judd (1985) capital tax problem; and, third, a dynamic
social insurance problem under limited commitment, in the style of Kocherlakota (1996). To keep the
arguments simple we focus on environments without aggregate risk.

An important feature of our work is the central focus that we place on promises as objects of anal-
ysis. This follows from a novel decomposition of generic Kydland and Prescott problems that we
provide. We split the policy choice procedure into two components. The first, an ‘inner problem’,
considers the best way to select the day-to-day aspects of policy, given an exogenous sequence of
promises that must be kept each time period. We show that this inner problem is fully time consis-
tent. It concerns the aspects of choice that remain once expectations have been fixed. The second
component, the ‘outer problem’, considers how the promises themselves should be chosen. This
corresponds to the practical problem of designing an institutional mandate. Under conventional re-
strictions the solution to the inner problem defines a well-behaved indirect utility function over the

3Kocherlakota (2010) provides a thorough discussion of immiseration in a dynamic Mirrlees setting.
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set of possible current and future promises. That is, it defines preferences over promises. These
preferences will differ from one period to the next, as the benefits from issuing promises are super-
seded by the costs of keeping them. We consider applying a recursive Pareto criterion to resolve this
intertemporal difference in preferences.

The principal advantage of this decomposition is that it isolates the time-inconsistent aspects of
choice for special treatment. It is only promises that are subject to our Pareto choice criterion, since
it is only the choice of promises that is time-inconsistent. In environments that do not exhibit any
time inconsistency there will be no role for promises, and our method will, trivially, deliver standard
optimal policies. As we discuss below, this is not true of some alternative proposals in the literature.

Our most instructive general characterisation result, presented in Section 5, relates to the steady-
state properties of policies that satisfy the recursive Pareto principle. We show that this steady state, if
it exists, will differ systematically from the steady state of Ramsey policy. Specifically, less weight will
be put on the value of manipulating past expectations. This is true in a precise sense. Whereas under
Ramsey policy the shadow value associated with past promises will generally be a non-stationary
object,4 when policy satisfies a recursive Pareto criterion it decays over time at rate β – the discount
factor.

Under slightly more restrictive assumptions we additionally prove a sufficiency result: any promises
inducing convergence to a steady state of the form that we characterise must satisfy the recursive
Pareto criterion. One implication of this is that the recursive Pareto criterion will usually be satis-
fied by multiple promise sequences. In Section 6 we explore ways to resolve this multiplicity in the
context of our three main examples. In each case it is possible to find a time-invariant restriction on
the choice of promises that results in simple, intuitive rules for policy conduct. These rules allow
the Pareto gains from commitment to be attained, whilst simultaneously ensuring that policy choices
will only vary in the underlying state of the economy. For instance, our chosen policy in the capital
tax example allows tax rates to vary as the capital stock changes, but it does not allow different rates
to be set for the same capital stock at different points in time. This is not true of Ramsey policy, as we
confirm below.

Considering the specific examples in more detail, we show that the recursive Pareto principle jus-
tifies a constant, slightly positive inflation target in the basic linear-quadratic New Keynesian prob-
lem.5 This contrasts with a Ramsey promise path in which inflation starts at a higher rate but grad-
ually decays to zero. The loss associated with policy that satisfies the recursive Pareto criterion is
initially above the loss from Ramsey, but after a finite length of time it becomes less appealing to con-
tinue with the Ramsey plan. We confirm an important feature of our method, which is generally true
in deterministic examples without endogenous states: the constant policy that we identify also solves
the problem of maximising the period-0 policymaker’s objective when the choice set is restricted to

4This is known from the work of Marcet and Marimon (2015).
5Recall that the basic linear New Keynesian Phillips Curve takes the form:

πt = βEtπt+1 + γyt

where inflation is πt, the output gap is yt and β and γ are parameters. Since generically β ∈ (0, 1), this exhibits a
long-run trade-off between inflation and output. Thus permanently positive inflation is associated with a permanently
positive output gap.
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time-invariant policies only. This is not true of alternative methods for choosing time-invariant policy
that have been proposed in the literature.

In the capital tax example we show that when promises satisfy the recursive Pareto criterion there
is convergence to a steady state with mild positive capital taxes – around 28 per cent of net capital
income in the calibration we use. Tax rates vary with the capital stock, but within relatively small
bounds. Capital taxes are higher when the capital stock is high, because the marginal costs from
distorting the accumulation decision are then relatively low. This contrasts with Ramsey policy,
which requires initial capital tax rates of around 300 per cent of the tax base, gradually decaying
to zero.6 This result obtains even if the initial capital stock starts in its long-run steady-state level.7

Analytically, the tax policy that we identify satisfies a set of intuitive restrictions linking measures
of the labour wedge, consumption wedge and capital wedge in each time period. These restrictions
are unchanging across time, and have close parallels with the classic ‘inverse elasticity’ rules that
conventionally feature in static optimal tax theory.

The finding that steady-state taxes are positive when the recursive Pareto principle is satisfied is
an important one because it emphasises that even if the celebrated ‘zero capital tax’ steady-state
outcome does obtain under Ramsey policy, it cannot be viewed as a desirable outcome in isolation
from the high-tax transition to it. Part of the reason why long-run capital taxes are held so low under
Ramsey policy is to ensure that high initial capital levies will not discourage savings to too great an
extent. When choice satisfies the recursive Pareto principle, high initial rates do not form part of the
chosen plan. This reduces the need for early generations to be given incentives to save. Long-run
capital taxes are higher as a consequence.

The model of social insurance with participation constraints provides a simple setting in which
long-run outcomes are clearly undesirable under Ramsey policy. We assume that a fixed fraction of
the population is permanently income-poor, and a utilitarian government would like to provide some
degree of redistribution to these agents. Initially a Ramsey planner does this by redirecting to them
some of the surplus raised by providing consumption insurance to the rest of the population, whose
incomes are stochastic. Over time, however, the resources available for redistribution disappear. This
is because initial high earners are promised high long-run utility levels, as compensation for the large
payments they make to the scheme. Making good on these promises means it eventually becomes
too costly to provide any further redistribution to low earners.

When promises are instead chosen to satisfy the recursive Pareto principle, redistribution to low
earners is a feature of policy at every horizon. The chosen allocation is the best feasible stationary
consumption distribution. Again, after a sufficient amount of time has passed it becomes preferable
for all current and future policymakers to switch away from the continuation of Ramsey policy, to
the policy that is recursively Pareto efficient.

In a final section before concluding, we highlight a close parallel between our recursive Pareto
6The tax base is net capital income, so tax rates in excess of 100 per cent imply that underlying capital assets are being

taxed.
7Straub and Werning (2015) have recently shown that capital taxes may fail to converge to zero in the original version of

the Judd (1985) model, with the economy instead collapsing to a corner solution under conventional parameterisations.
Our version of the model differs from theirs in two regards. First, it is a representative-agent economy: there is no
capitalist-worker distinction. Second, labour supply is endogenous. Together these features imply a zero steady-state
capital tax rate for the standard calibrations we use.
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approach to resolving Kydland and Prescott problems and the textbook analysis of Pareto-efficient
dynamic allocations in pure consumption overlapping generations models, of the sort introduced by
Samuelson (1958). Specifically, the problem that we solve when finding a recursively Pareto efficient
sequence of promises appears isomorphic to the problem of finding a sequence of intergenerational
transfers that will ensure long-run Pareto efficiency in the allocation problem among different gener-
ations in the OLG setting. The link between the two problems is helpful in clarifying aspects of our
analysis, particularly the multiplicity issue studied in Section 6. We show that this is equivalent to
the problem of fixing the initial consumption endowments of different generations in Samuelson’s
model. This parallel is likely to be useful in pointing to both normative and positive options for
analysing how different generations should be treated.

1.1. Relation to literature

Many economists have expressed unease about the Ramsey approach to choice under time inconsis-
tency. Svensson (1999) puts the problem succinctly, asking ‘Why is period zero special?’ The idea
that preferences in some initial time period should be privileged above others does not seem con-
sistent with the way that policy is, or should be, designed in practice. A large body of work has
responded by supposing that choice must be made on a period-by-period basis, and analysing the
resulting outcomes. An early branch of this literature, led by Chari and Kehoe (1990) and Atkeson
(1991), investigated the set of reputational equilibria that could be supported in these settings by ap-
propriate trigger strategies, which allowed for limited improvements on Markov-perfect equilibria.8

More recently, a large number of papers have computed the properties of Markov-perfect equilibria,
highlighting the inefficiencies that result. 9

Our work shares with this literature an unease about the special treatment Ramsey policy gives
to the first policymaker. Where it differs is in continuing to ask a normative question: How should
policy be designed, given that we do not want period zero to be treated as special? This is different
from asking what sorts of policies could be expected to follow if there were no formal commitment
device.

When commitment devices are assumed, different branches of the literature have addressed per-
ceived problems with Ramsey policy on a largely case-by-case basis, depending on whether it is the
long-run outcome or transition dynamics that appear more implausible. Influential work by Phe-
lan (2006) and Farhi and Werning (2007) has placed particular focus on strategies for avoiding the
immiseration result in the model of Atkeson and Lucas (1992). These authors proceed by attaching
distinct non-zero Pareto weights to later generations when designing social insurance policy. Phelan
considers policy that maximises steady-state welfare, whereas Farhi and Werning focus on a broader
Pareto set. Both approaches are equivalent to increasing the social discount factor above its private-
sector value, so that the government values later generations more than private individuals do. As
an approach this is indeed sufficient to overturn immiseration, but its implications stretch far wider.

8Important papers by Sleet and Yeltekin (2006) and Golosov and Iovino (2014) have placed particular attention on the
best equilibria that are supportable in this way.

9Examples include Klein and Ríos-Rull (2003), Ortigueira (2006), Ellison and Rankin (2007), Klein, Krusell and Ríos-Rull
(2008), Díaz-Giménez et al. (2008), Martin (2009), Blake and Kirsanova (2012), Reis (2013) and Niemann et al. (2013).
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It implies a change to dynamic decisionmaking even in models where no Kydland and Prescott prob-
lem is present. In a textbook Ramsey growth model, for instance, it would mandate a higher savings
rate for any given capital stock.

An important message of our paper is that time inconsistency is a more limited problem than the
broader question of how best to discount the future, and can be addressed via comparatively limited
departures from standard dynamic optimisation. The main difference between our work and that
of Phelan (2006) and Farhi and Werning (2007) is that we focus only on intergenerational preference
differences with regards to the choice of promises. This is because, as we show, it is only the choice of
promises that is subject to a time-inconsistency problem. Capital accumulation decisions will not be
affected directly by what we do. More generally, our method will not mandate any departure from
conventional policy choices in settings that do not feature Kydland and Prescott problems. This is
not true when the social discount factor is changed. It follows from important differences between
the Pareto criterion that we apply and the criterion that Farhi and Werning (2007) use. We defer a
fuller discussion of it to Section 4.

The other body of work that has considered normative alternatives to Ramsey policy is the New
Keynesian monetary policy literature. Here, by contrast, it is the fact that Ramsey policy comes with
transition dynamics that is identified as problematic. To address this, Woodford (1999, 2003) has
advocated a ‘timeless’ approach to policy design, which involves implementing steady-state Ramsey
policy from the start of time.10 The capital tax literature often proceeds in similar fashion, albeit more
informally, with high taxes along the transition generally being neglected for the purposes of policy
advice.11 But the justification for these approaches is unclear. There is no particular reason why the
steady state of Ramsey policy should itself be desirable, independently of the transition. What if the
long-run outcome of Ramsey policy is immiseration for almost all agents? Our paper differs from
this literature in the way it derives transition-free policy directly from the recursive application of
an expanded choice set – the Pareto set, as distinct from the set of optimal choices – rather than by
augmenting Ramsey policy ex-post.

1.2. Outline

The remainder of the paper proceeds as follows. Section 2 sets out the general problem that we study,
and shows how this framework nests our three main examples. Section 3 explains the decomposition
of the general problem into ‘inner’ and ‘outer’ components, and derives some important properties
of the value function for the inner problem. Section 4 provides alternative Pareto criteria that could
be applied the outer problem, and explains why we favour what we label an ‘ex-post’ variant. Section
5 proves conditions under which a policy that satisfies the recursive Pareto principle will exist, and
characterises the associated policy in steady state, highlighting its generic difference with Ramsey
policy. Section 6 explores desirable selection procedures for obtaining a unique policy in the context

10More recent papers in the New Keynesian tradition that follow this approach include Adam and Woodford (2012),
Benigno and Woodford (2012), and Corsetti, Dedola and Leduc (2010). Damjanovic, Damjanovic and Nolan (2008)
offer an alternative approach based on maximising steady-state welfare, influenced by results due to Blake (2001) that
showed timeless perspective policy may not maximise expected welfare.

11See, for instance, the influential survey paper by Atkeson, Chari and Kehoe (1999).
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of our three main examples. Section 7 highlights the parallels between recursively Pareto efficient
policies and Pareto efficient equilibria in OLG economies. Section 8 concludes. All proofs are col-
lected in an appendix.

2. General setup

Time is discrete, and runs from period 0 to infinity.12 In each period t there exists a policymaker with
preferences over allocations from period t onwards. These allocations are of the form {xs+1, as}∞

s=t

where xs ∈ X ⊂ Rn is a vector of n states determined in period s− 1 and as ∈ A ⊂ Rm ×Rς is a
vector of controls determined in period s. There are m controls, and each is defined for all possible
realisations of a stochastic vector σs ∈ Σ, where Σ is a countable set of cardinality ς. ς may be infinite.
as (σs) ∈ Rm denotes the value of as particular to the realisation σs of the stochastic process.

The policymaker’s preferences in period t are described by a time-separable objective criterion Wt:

Wt :=
∞

∑
s=t

βs−tr (xs, as) . (1)

The policymaker is constrained by a set of n restrictions defining the evolution of the state vector:

xs+1 = l (xs, as) , (2)

a set of i contemporaneous restrictions linking controls and states:

p (xs, as) ≥ 0, (3)

and j infinite-horizon ‘forward-looking’ constraints:

Es

∞

∑
τ=0

βτh (as+τ (σs+τ) , σs+τ) ≥ h0 (as (σs) , xs, xs+1, σs) (4)

It is assumed that j ≥ 1 so the policymaker is subject to at least one forward-looking constraint,
but otherwise there is no requirement that any of i, j or m should be non-zero. Constraints (2) to
(4) hold for all s ≥ t in period t, with the functions in the constraints vector-valued and of the
specified dimension. The values of the functions in (4) are allowed to vary directly in the vector of
the exogenous stochastic process σs, as well as indirectly through as (σs). Where the meaning is clear,
we will usually keep the dependence of as on σs implicit, writing h (as, σs) and so on.

The expectations in (4) are taken with respect to an ergodic Markov process for σs defined on Σ.
The process has a time-invariant probability of transiting from state σ to state σ′ that is denoted by
P (σ′|σ) and a stationary probability of state σ denoted by P (σ). Constraint (4) must hold for all initial
σs ∈ Σ. By assumption there is no aggregate uncertainty. This approach to modelling uncertainty
is somewhat restrictive, but is economical on notation and sufficient to incorporate a number of
important models. This includes the social insurance example below, where there is idiosyncratic

12Notation is adapted from Marcet and Marimon (2015).
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income risk. It will be useful at times to make reference to A (σ) ⊂ Rm as the space of control
variables available for a given σ draw.

The exclusive focus on infinite-horizon constraints in (4) is solely in order to keep subsequent no-
tation compact. The arguments that we make can easily be augmented to incorporate time-separable
forward-looking restrictions of arbitrary order. Nonetheless, many constraints that do not immedi-
ately appear to have the same structure as (4) can be mapped into this form, as shown in the three
examples below. The absence of state variables from the h (·) function is likewise for notational con-
venience. We have not experimented with examples that include such terms, but the extension ought
to be straightforward.

It is constraints of the form (4) that are responsible for time inconsistency. The policymaker in
period t is not restricted to ensure that the versions of these constraints relating to t− 1 and earlier
remain satisfied, and in general it will be best to renege on any past promises to satisfy them. This
was the problem highlighted by Kydland and Prescott (1977). The next section briefly introduces
three examples that can be nested in the general setup.

2.1. Three examples

Example 1: A linear-quadratic in�ation bias problem

Allocations in period t consist of inflation πt and the output gap yt. These are both control vari-
ables so there are no state variables. The policymaker’s objective is a quadratic sum of losses due to
inflation and the output gap:

−1
2

∞

∑
s=t

βs−t
[
π2

s + χ (ys − ȳ)2
]

, (5)

where χ > 0 is a parameter and ȳ > 0 is the optimal level for the output gap.13 The policymaker
is subject to a single constraint, a deterministic version of the New Keynesian Phillips curve. This is
usually written in the form:

πs = βEsπs+1 + γys, (6)

with γ a parameter. Recursive substitution maps it into the same form as the general constraint (4):

πs = Es

∞

∑
t=s

βt−sγys (7)

where πs corresponds to the h0 (·) function and γyt corresponds to h (·) .14 This forward-looking con-
straint provides an incentive to promise low inflation in the future so as to ease the current inflation-
output trade-off. Such a promise is generally time-inconsistent. Full details can be found in Woodford
(2003).

13In the underlying non-linear version of the problem, this exceeds the natural level of output due to monopoly power in
the product market.

14The restriction is written as an equality rather than the inequality treated in the general setting. This is not a significant
departure: it would always be possible to write the restriction less compactly as two overlapping inequalities.
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Example 2: A capital tax problem

We consider a variant of the balanced-budget problem studied by Judd (1985). A representative
agent consumes, saves and supplies labour. For exogenous reasons, the government must consume
a fixed quantity g of real resources each period. Government consumption is funded by a linear tax
on labour income and a linear tax on capital income net of depreciation. The government cannot
borrow. Allocations in period t are consumption ct, labour lt, output yt and the capital stock kt. The
capital stock is the only state variable and the rest are controls. The policymaker’s objective in period
t is to maximise the lifetime utility of the representative agent:

∞

∑
s=t

βs−tu (cs, ls) (8)

The policymaker faces an aggregate resource constraint of the form in (2):

ks+1 = ys − cs − g + (1− δ) ks, (9)

and a production constraint of the form in (3):

ys ≤ F (ks, ls) . (10)

The distortionary character of taxes implies a further ‘implementability’ constraint that restricts al-
locations available to the policymaker when the problem is written as here in its primal form.15 In
examples of this type this is usually written in the form:

β [uc,s+1 (cs+1 + ks+2) + ul,s+1ls+1] ≥ uc,sks+1 (11)

Again, recursive substitution allows it to be mapped into the structure of our general constraint:

∞

∑
t=s

βt−s [uc,t+1ct+1 + ul,t+1lt+1] ≥ uc,s (cs + ks+1) + ul,sls (12)

so that uc,t (ct + kt+1) + ul,tlt corresponds to h0 (·) and uc,t+1ct+1 + ul,t+1lt+1 corresponds to h (·). This
constraint says that the value of consumption and capital purchases in period s + 1, net of any labour
income that period, must weakly exceed the value of the capital holdings that are taken into period
s + 1, where these values are calculated in period s at prices corresponding to anticipated marginal
rates of substitution. In short, it prevents the policymaker from restricting the consumer’s spend-
ing power ex post relative to what is anticipated.16 This will conflict with the incentive of a later
policymaker to tax the consumer’s existing, inelastic capital holdings.

15See Chari and Kehoe (1999).
16Stating the condition as an inequality implicitly allows that the policymaker could make use of positive lump-sum

transfers in any given time period, but taxes must be distortionary.

10



Example 3: Social insurance with participation constraints

This is a variant of the limited commitment model due to Kocherlakota (1996). There is a contin-
uum of agents indexed on the unit interval, with each agent receiving an endowment each period.
Measure µ ∈ [0, 1) of agents receive a low income yl in every period. The remaining measure (1− µ)

receive a high income yh > yl with probability p in a given period, and a low income yl with probabil-
ity (1− p). The endowment draws are independent across agents and time, and publicly observable.
The Ramsey-optimal plan in this environment has the consumption levels of agents subject to income
risk depending only on the time elapsed since those agents last received a high-income draw, and
to keep the discussion compact we restrict attention to policies with this feature.17 The exogenous
stochastic variable σs,i ∈ Σ can then be defined as the number of periods since agent i last drew a
high income, with Σ the set of positive integers (including 0). The Markov process governing σs,i for
generic agent i is:

σs,i+1 =

σs,i + 1 with prob (1− p)

0 with prob p
.

Agents subject to income risk are only differentiated by the time since they last had a high-income
draw, and hence can be indexed by their σs,i values.18 Furthermore, the stochastic process governing
σs,i implies that there will be measure (1− µ) (1− p)σ p of agents in each period who last received a
high-income draw σ periods ago.

The policymaker’s objective in period t is utilitarian:

∞

∑
s=t

βs−t

[
(1− µ)

∞

∑
σ=0

(1− p)σ pu (cs (σ)) + µu(cp
s )

]
, (13)

where cs (σ) is the consumption in period s of an agent who received a high-income draw σ peri-
ods ago, and cp

s is the consumption in period s of an agent who has a permanently low income. The
utility function u satisfies the usual properties. The problem has interesting properties without incor-
porating public or private asset accumulation, so the resource constraint is assumed to hold period
by period:

(1− µ)
∞

∑
σ=0

(1− p)σ pcs (σ) + µcp
s ≤ [1− (1− µ) p] yl + (1− µ) pyh. (14)

Incentive compatibility requires the insurance scheme to deliver at least as much utility to an agent
as they could obtain in autarky. For agents with stochastic income draw yt, this implies infinite-

17This keeps the notation simple, since for these policies it is sufficient for the policymaker to summarise an agent’s history
up to period s in the single variable σs,i. The results obtained do not change when more general forms of dependence
are formally allowed.

18We assume that information on the infinite history of endowment draws is available from the start of time. This infor-
mation will be irrelevant to the Ramsey plan, but may be of use in designing a stationary policy. It would make no
difference to the argument if this ‘information’ were fictitiously drawn according to the true underlying distribution in
period 0.
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horizon forward-looking constraints of the form in (4):

Es

∞

∑
t=s

βt−su (ct (σt,i)) ≥ u (ys) +
β

1− β

[
pu(yh) + (1− p) u(yl)

]
, (15)

so that the autarky value on the right-hand side corresponds to h0 (·), and the within-period utility
function u (ct (σ)) corresponds to h (·). For the permanently low-income agents, the constraint is:

∞

∑
s=t

βs−tu(cp
t ) ≥

1
1− β

u(yl) (16)

for the permanently low income agents. These incentive compatibility constraints are the source
of time inconsistency. The government has an ex-ante incentive to minimise costs and maintain the
social insurance scheme by promising high future utility to agents with a high income draw, but there
will be ex-post incentives to renege on these promises.

2.2. Assumptions

It is useful to describe a range of possible restrictions that can be placed on general functions r, l, p,
h, and h0 later in the analysis.

Assumption 1. The functions r : X × A → R, l : X × A → Rn, p : X × A → Ri, h : A (σ) → Rj and
h0 : X× X× A (σ)→ Rj are continuous. The spaces A ⊂ Rm and X ⊂ Rn are compact and convex.

Assumption 2. The functions r, l, p, h, and h0 are continuously differentiable.

Assumption 3. The function h is quasi-concave and the function h0 is quasi-convex.

Assumption 4. The function p is quasi-concave and the function l is linear.

Assumption 5. The function r is strictly quasi-concave.

Assumption 6. The function r is strictly concave.

Assumption 7. The functions p and h are concave and the function h0 is convex.

Assumption 1 brings some basic structure to the problem and will be assumed throughout. In most
environments of interest the relevant constraint functions are utility functions, production functions,
profit functions and the like, for which continuity is a relatively innocuous imposition. Convexity and
compactness are similarly conventional structures to impose on the spaces A and X. Assumption 2 is
invoked principally for ease of exposition. It would be possible to relax it, but only at notational cost
and without changing the character of the results, so it is likewise imposed throughout. Assumptions
3 to 7 place restrictions of varying strength on the structure of the problems studied. In the capital tax
example, for instance, the relevant functions in the implementability constraint (12) will not generally
satisfy quasi-concavity, let alone full concavity. For an example of this type it will generally only be
possible to confirm Assumptions 3 to 7 under specific functional forms.
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The main purpose of Assumptions 3, 5 and 7 is to allow some structure to be placed on a class of
indirect objective functions to be defined below. These will be central to the analysis of alternative
normative strategies, and differing assumptions on the primitives will affect what can be said about
efficient resolutions to the time inconsistency problem.

2.3. Ramsey policy

Before setting out our recursive Pareto approach to choosing policy, it is useful briefly to recap the
properties of Ramsey policy, both in general and in our three examples.

Ramsey policy is an allocation
{

xR
s+1, aR

s
}∞

s=0 that maximises W0 subject to all relevant constraints
of the form (2) to (4) for all s ≥ 0. In general, the continuation of this policy

{
xR

s+1, aR
s
}∞

s=t from period
t > 0 will not maximise Wt subject to the same constraints being satisfied for s ≥ t. This is because
the Ramsey policy will have been influenced by a desire to affect expectational constraints that were
binding in periods prior to t, but which are no longer a concern – the time inconsistency problem.
The characteristics of Ramsey policy in the three examples are next introduced and discussed.

Example 1: A linear-quadratic in�ation bias problem

The Ramsey plan for the linear-quadratic inflation bias example is familiar from the New Keynesian
literature.19 Figure 1 shows the dynamic paths of inflation and output under a conventional calibra-
tion of β = 0.96, γ = 0.024, χ = 0.048, ȳ = 0.1. Initial choices are unconstrained by the effects of
current inflation on past expectations, meaning that the costs of engineering high output are initially
quite low. The output gap is initially set above 9 per cent, after which it is optimal to allow inflation
to drift downwards over time as lower future inflation permits higher current output under the New
Keynesian Phillips Curve (7). In steady state the inflation rate is zero, as is the output gap.

Example 2: A capital tax problem

The Ramsey path in the capital tax example is plotted in Figure 2, assuming standard parameter
values and functional forms.20 The initial capital stock is set equal to the Ramsey steady-state value,
and plotted in the lower panel as a percentage of the steady-state capital stock. The broad properties
of the Ramsey path are familiar from the literature following Chamley (1986) and Judd (1985). Initial
taxes on net capital income are implausibly high, at around 300 per cent, but decay to zero as time
progresses.21 The capital stock reflects the path of capital taxes, falling over the first 10 years to a
level about 5 per cent below its steady-state value as higher taxes reduce the incentives to save. The
capital stock only gradually recovers afterwards as taxes fall and the incentives to save are restored.

19See, for example, Woodford (2003).
20Specifically, utility takes an additively separable isoelastic form. Consumption utility is logarithmic and labour disutility

is exponential, with an inverse Frisch elasticity equal to 2. The production function is Cobb-Douglas with capital share
0.33. β = 0.96, δ = 0.05 and g = 0.6, which ensures a steady-state government consumption to output ratio of 0.31.

21There is no economic reason to rule out capital taxes in excess of 100 per cent, as agents can always meet the associated
liabilities by selling their underlying capital holdings.
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Figure 1: Ramsey paths for inflation and output in the linear-quadratic inflation bias problem
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Figure 2: Ramsey capital taxes and the capital stock in the capital tax problem
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Figure 3: Consumption path for low-income agents in the social insurance problem

Example 3: Social insurance with participation constraints

The general properties of social insurance models with participation constraints have been explored
in a number of recent papers.22 Figure 3 charts the dynamic consumption path of individuals whose
income endowment is constrained to be low each period.23 These agents initially receive a significant
transfer, raising their consumption to just below the average endowment in the economy.24 As time
progresses, their consumption drifts down as transfers are instead directed towards satisfying the
participation constraints of agents who have just received a high-income draw. The permanently low
income agents are eventually limited to consuming only their endowment. An identical consumption
trajectory is followed by an agent who is subject to income risk but is unlucky enough always to draw
a low income.

Discussion: Asymmetric objectives and outcomes

An important characteristic of Ramsey policy in all three examples is its dynamic asymmetry. Ramsey-
optimal inflation trends downwards in the linear-quadratic inflation bias example, even though the
structure of this simple New Keynesian economy is entirely stationary. The same is true of optimal
consumption for permanently low income agents in the social insurance example. The capital tax
example features capital as an endogenous state variable, which could potentially account for some
of the dynamics in policy choices. However, the calibration assumes that the initial capital stock is
equal to its eventual steady-state value. Nonetheless, the initial policy with capital taxes at 300 per
cent could hardly be more different from the limiting policy when capital taxes converge on zero.

22Among others, see Krueger and Perri (2006), Krueger and Uhlig (2006), Broer (2013) and Ábrahám and Laczó (2014).
23The calibration uses log consumption utility with β = 0.96, µ = 0.2, p = 0.01, yl = 1 and yh = 10. Qualitative outcomes

are not strongly dependent on these choices.
24The average endowment is 1.072. A first-best utilitarian policy would provide this level of consumption to all agents in

all periods.
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Thus in all three examples the Ramsey policy induces a different allocation in identical economic cir-
cumstances, dependent entirely on the amount of time that has progressed since optimisation took
place.

This asymmetry between long-run and short-run outcomes has led a number of authors to inves-
tigate whether an alternative approach to policy design could be possible. The question is what the
relevant concept ought to be. The ‘timeless perspective’ approach of Woodford (1999, 2003) proposes
one answer that has been widely applied in the New Keynesian policy literature.25 It requires the
policymaker in period 0 to immediately implement the steady-state allocations associated with Ram-
sey policy. Thus, Woodford (2003) would advocate an optimal inflation rate of zero in period 0 of the
linear-quadratic inflation bias example. His heuristic justification is that the Ramsey steady-state pol-
icy is time-invariant, and would have formed part of a Ramsey-optimal path had optimisation taken
place in the distant past. The resulting choices would have been optimal from some time perspec-
tive, albeit one prior even to the first period of the model. The same focus on Ramsey steady-state
outcomes has been emphasised more informally in the dynamic capital tax literature, where policy
recommendations have typically stressed the zero steady-state capital tax rates whilst discarding the
associated transition to steady state.26

However, ‘Do what would have been planned for today in the distant past’ may not always be
a desirable, or even feasible, maxim to follow. The example of social insurance with participation
constraints sounds a particularly cautionary note. The permanently low income agents receive no
transfers from their more fortunate peers in Ramsey steady state, and so are left consuming their
low income endowment forever. Immediate implementation of the steady-state allocations would
hence eliminate all the gains from redistribution that accrue during the first 200 ‘early’ years of the
Ramsey policy. This is clearly not a desirable strategy. It is similarly unclear whether the Ramsey
steady-state allocation can necessarily be implemented in period 0 when the policy environment in-
cludes endogenous state variables. In a version of the social insurance problem with public storage
and a sufficiently high real interest rate, the Ramsey-optimal policy involves the policymaker accu-
mulating sufficient assets so that first-best complete risk-sharing is achieved in the long run.27 This
clearly cannot be implemented from the very first time period if the policymaker has not yet accu-
mulated sufficient assets. In examples such as these the timeless perspective policy does not seem
well defined.28

The approach we take is to expand the within-period choice set, defining a policy criterion that is
weaker than ‘optimality’ but can still be applied recursively. Specifically, we focus on a version of the
Pareto criterion applied to the choice of promises over time. In the next section we specify exactly

25Recent examples include Adam and Woodford (2012) and Corsetti, Dedola and Leduc (2010). Woodford (2010) provides
a more detailed discussion of the merits of eliminating asymmetries over time.

26See Atkeson et al. (1999). Straub and Werning (2015) have recently highlighted the inseparability of transition dynamics
from the optimality of the subsequent zero rate.

27Ljungqvist and Sargent (2012), Chapter 20, gives a textbook presentation of this result.
28From a technical perspective, it is known from the work of Marcet and Marimon (2015) that the cross-sectional Pareto

weights applied by the policymaker to agents will evolve in a non-stationary manner in environments such as our
Example 3. Woodford (2003) presents his approach as imposing steady-state values for the multipliers on past promises
when solving the period 0 decision problem. But in Example 3 these multipliers are one and the same as the cross-
sectional Pareto weights. They do not have steady-state values because of their non-stationarity. It is not clear how a
timeless perspective policymaker should proceed.
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what we mean by ‘promises’ in this context, and how these objects differ from other choice variables.

3. Inner and outer problems

Our approach is to divide the general problem into two components, an ‘inner’ and ‘outer’ prob-
lem.29 The outer problem is concerned with the selection of a dynamic path for promise variables.
These correspond to the promise values used by Abreu, Pearce and Stachetti (1990) to give a recur-
sive structure to the Ramsey problem, though we study them as complete dynamic sequences. We
consider the choice of these sequences to be an ‘institutional design’ problem. An inner problem
can then be cast, determining the optimal choice of all other variables of interest, holding constant
a given sequence of promises. The value of this inner problem is contingent on the given sequence
of promises, and can be interpreted as an indirect utility function across possible promise sequences.
The time inconsistency problem then manifests itself as time variation in this preference structure,
and conventional normative criteria, such as Pareto efficiency, can be used to assess the desirability
of alternative institutions.

3.1. The inner problem

We present the inner problem first. This solves for optimal allocations, conditional on feasibility and
given sequences for the promise values. Mathematically, in period t ≥ 0 the inner problem solves:

max
{xs+1,as}∞

s=t

Wt :=
∞

∑
s=t

βs−tr (xs, as) ,

subject to the evolution of the state vector (2), the restrictions linking controls and states (3), and the
promise constraints:

h (as, σs) + βEωs+1 (σs+1) ≥ h0 (as, xs, xs+1, σs) , (17)

h (as, σs) + βEωs+1 (σs+1) ≥ ωs (σs) , (18)

for all s ≥ t, where xt ∈ X is the initial state vector and ωs (σs) ∈ Rj is a σ-contingent vector of
promise values in all s ≥ t.30

The collection of promise values across σs draws is denoted by ωs := {ωs (σs)}σs∈Σ. Condition (17)
can be interpreted as a ‘promise-making’ constraint, as it represents a new cross-restriction on the
choice of policy variables in s, conditional on a particular array of promise values for period s + 1.
Condition (18) is a ‘promise-keeping’ constraint, as it ensures that prior commitments, in the form of
ωs (σs), are met.

For the original constraint (4) to hold for all s ≥ t, it is sufficient to ensure that (17) holds for all s ≥ t
and (18) for all s > t. Imposing (18) also for period t would add an additional restriction on choice.
This can be motivated by a need to respect past promises, but not by the fundamental economic

29The separation most closely resembles that of Hansen and Sargent (2008) in their specification of robust control theory.
30When (17) binds we additionally require for consistency that ωs (σs) = h0 (as, xs, xs+1, σs) .
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restrictions that feature from period t onwards. Clearly this is a manifestation of time inconsistency.

3.1.1. Notation

The set of infinite promise sequences {ωs}∞
s=t such that the inner problem has a non-empty constraint

set is denoted by Ω (xt) ⊂ (Rj ×Rς)∞, for an initial state vector xt. The interior of Ω (xt) is repre-
sented by Ω̊ (xt). Compactness of A and X and the continuity properties imposed under Assumption
1 together imply that the constraint functions in (17) and (18) are bounded uniformly in s. This in
turn means that sufficiently large, uniform bounds can be imposed on the value of ωs (σs) without
affecting the problem. These bounds are incorporated into the definition of Ω (xt):31

Assumption. {ωs}∞
s=t ∈ Ω (xt) only if the sequence {ωs}∞

s=t is uniformly bounded in s for all xt ∈ X.

The value of the inner problem is denoted by V({ωs}∞
s=t, xt), for all xt ∈ X and all {ωs}∞

s=t ∈ Ω (xt).
This object will be a major focus of the analysis, and we label it the ‘promise-value function’. Where
convenient, the convention will be that V({ωs}∞

s=t, xt) = −∞ when the inner problem has an empty
constraint set, which allows V to be defined on the entire product space

(
Rj ×Rς

)∞.
It will also be useful to consider the evolution of the state variables associated with any given

promise sequence. We say that the sequence {ωs}∞
s=t and initial state xt ‘induces’ a sequence of

state vectors {x∗s+1}∞
s=t if there exists a sequence of control variables {a∗s }∞

s=t such that {x∗s+1, a∗s }∞
s=t

solves the inner problem for given {ωs}∞
s=t and xt. The following property follows from a standard

application of the maximum theorem to this setting. A proof is given in the appendix:

Proposition 1. Suppose Assumptions 1, 3, 4 and 5 hold. Fix xt and {ωs}∞
s=t ∈ Ω̊ (xt). For all T ≥ t, the

sequence of state vectors {x∗s+1}T
s=t induced by

{
xt, {ωs}∞

s=t
}

is continuous in {ωs}∞
s=t and xt.

The qualification that promises should be in the interior of Ω (xt) here simply reflects the fact that
outside of Ω (xt) the optimal path {x∗s+1}∞

s=t is not defined, so continuity cannot be satisfied.

3.1.2. Time consistency

Proposition 2. The inner problem is time consistent. That is, if {x′s+1, a′s}∞
s=t solves the inner problem for

promise sequence {ωs}∞
s=t and initial state vector xt, then the continuation {x′s+1, a′s}∞

s=t+τ solves the inner
problem for promise sequence {ωs}∞

s=t+τ and initial state vector x′t+τ for all τ ≥ 1.

The proof is straightforward and given in the appendix. It follows because the inner problem
has seen all forward-looking restrictions replaced by a succession of separate static constraints, (17)
and (18). Static constraints cause no time inconsistency issues. The important insight here is that
time inconsistency problems derive from different policymakers having different incentives to make,
keep and renege upon promises. Once these promises are treated as given, no additional source of
time inconsistency remains.

31The condition is stated as an assumption for clarity. It is left unnumbered since it is without loss of additional generality.
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3.2. Properties of the promise-value function

The promise-value function V({ωs}∞
s=t, xt) is not an object commonly analysed in the literature. It

plays a central role in the arguments that follow, and the strength of these arguments will often
depend in turn upon the regularity properties of V. In this subsection we thus set out in detail
the implications for V of placing different combinations of Assumptions 1 to 7 on the problem’s
primitives. Proofs rely on established properties of parameterised optimisation problems, and are
contained in the appendix. A reader less interested in these technical details can skip to Section 3.3
without losing track of the main arguments.

Proposition 3. Fix xt and {ωs}∞
s=t ∈ Ω̊ (xt). Suppose Assumptions 1 and 3 hold. Then the promise-value

function V
(
{ωs}∞

s=t , xt
)

is continuous in {ωs}∞
s=t. Suppose Assumptions 1 and 4 hold. Then the promise-

value function V
(
{ωs}∞

s=t , xt
)

is continuous in xt.

The proof relies on a standard application of Berge’s Theory of the Maximum. Continuity is an
important regularity property for the V function to satisfy, but it will be helpful in most settings to
strengthen it to continuous differentiability. This requires a standard constraint qualification condi-
tion, LICQ, to be satisfied by the restrictions (17) and (18) at a chosen allocation. This condition is
presented in the appendix.32 It amounts to requiring that each binding constraint in (17) and (18)
is affected in a linearly independent manner by changes in the policy variables, and thus that there
is a unique set of Lagrange multipliers associated with the inner problem. This does not seem an
important limitation for practical purposes.

Proposition 4. Suppose Assumptions 1 to 5 hold. Fix xt and suppose that LICQ is satisfied at the solution
to the inner problem for all {ωs}∞

s=t ∈ Ω̊ (xt) and xt. Then the promise-value function V({ωs}∞
s=t, xt) is

continuously differentiable in each element of the sequence {ωs}∞
s=t. Its derivative with respect to ωs(σs) is

given by the j× 1 vector:

−βs−tP (σs) λk
s (σs) + βs−tP (σs)

[
λm

s−1 (σs−1) + λk
s−1 (σs−1)

]
(19)

where λm
s (σs) and λk

s (σs) are the vector multipliers on constraints (17) and (18) respectively,33 and:

λm
t−1 (σt−1) = λk

t−1 (σt−1) = 0

The main contribution of Proposition 4 is to establish the conditions under which a standard en-
velope condition applies to the promise-value function V. In the event that it does, the derivatives
associated with changes to the promise vectors are simple linear combinations of the multipliers on
the promise-keeping and promise-making constraints.

The expressions for the derivatives in (19) directly reflect the time inconsistency associated with
choice of the promises in the outer problem. So long as s > t, the second term will generically
be non-zero because there are shadow marginal benefits from making a promise that will later be
kept. When s = t these benefits have passed and the marginal effect of changing contemporaneous

32It is based on Wachsmuth (2013).
33The superscripts distinguish the multipliers on promise-making and promise-keeping constraints respectively.
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promises is only a cost, given by the first term in (19). It is also worth noting that the marginal effect
associated with the promise-making constraint in period s − 1 is discounted at the same rate βs−t

as the marginal effect associated with the promise-keeping constraint in period s. This is due to the
presence of β pre-multiplying future promises in constraints (17) and and (18). It implies that multi-
pliers will generally evolve in a non-stationary fashion when promises are chosen optimally from the
perspective of period t, which implies that the derivative is set to zero. This non-stationarity property
has been highlighted by the work of Marcet and Marimon (2015). It has important implications for
the character of the Ramsey solution in the long run, particularly in models with dynamic incentive
constraints.

Proposition 5. Suppose Assumptions 1, 5 and 7 hold. Fix xt. The promise-value function V (·, xt) is strictly
quasi-concave in {ωs}∞

s=t ∈ Ω (xt) so long as the corresponding constraints of the inner problem bind.34 If
Assumptions 1, 5 and 7 hold except that r is only weakly concave then V (·, xt) is quasi-concave in {ωs}∞

s=t ∈
Ω (xt) where the corresponding constraints of the inner problem bind.

Proposition 6. Suppose Assumptions 1, 5 and 7 hold. Fix xt. The space Ω (xt) is convex.

The proofs of these two Propositions are near-identical, with the exception that Proposition 6 re-
lates solely to the constraint set, so goes through without any concavity restrictions on r. For this
reason we only prove 5 in the appendix. Quasi-concavity implies that upper contour sets in the
space Ω (xt) are convex, given that Ω (xt) is likewise. This is of substantial use when establishing
the Pareto ranking of alternative sequences of promises, for reasons familiar from textbook general
equilibrium analysis.

3.3. The outer problem: Ramsey policy and time inconsistency

The outer problem is to choose a sequence for the promise values {ωs}∞
s=0 ∈ Ω (x0). Choice here

is subject to a time inconsistency problem, because from the perspective of period t it will never
be desirable for the promise vector ωt to place a meaningful constraint on choice in the associated
inner problem from period t onwards. Any benefits from issuing promises accrue in the time periods
when the promises are made, not when they are kept. But the advantage of having separated the
inner and outer problems is that time inconsistency can now be viewed exclusively as a dynamic
inconsistency in policymakers’ preference orderings over promise sequences. For a given state vector
xt the promise-value function V

(
{ωs}∞

s=t , xt
)

describes a rational preference ordering over the space(
Rj ×Rς

)∞. We use variation in these preference structures to provide a formal definition of time
inconsistency:

Definition 1. Fix x0, and consider a promise sequence {ω′s}∞
s=0 ∈ Ω (x0) that induces {x′s+1}∞

s=0.
We say that this promise sequence is time-consistent if and only if there exists no other sequence
{ω′′s }∞

s=0 ∈
(
Rj ×Rς

)∞ such that V({ω′′s }∞
s=t, x′t) > V({ω′s}∞

s=t, x′t) for some t ≥ 0.

A Ramsey promise sequence can be defined using the initial-period promise-value function:

34That is, for variations in ωt that have an impact on binding constraints of the form (17) and (18)
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Definition 2. Fix x0. The promise sequence {ωR
s }∞

s=0 ∈ Ω (x0) comprises a Ramsey plan if and
only if there exists no alternative sequence {ω′s}∞

s=0 ∈
(
Rj ×Rς

)∞ such that V({ω′s}∞
s=0, x0) >

V({ωR
s }∞

s=0, x0).

The next proposition establishes using our apparatus what was first shown by Kydland and Prescott
(1977):

Proposition 7. Let {ωR
s }∞

s=0 be a Ramsey plan, given some x0. Exactly one of the following is true:

1. Constraints (17) and (18) never bind in the inner problem, given {ωR
s }∞

s=0 and x0.

2. The Ramsey plan is not time-consistent.

This well-understood result does not require much further comment. Either promises never mat-
ter, or else keeping them is not a time-consistent choice. It is, though, instructive to characterise the
Ramsey plan in terms of the derivatives of the V function. Ramsey policy solves the unconstrained
problem of maximising V({ωs}∞

s=t, x0) with respect to each element of the promise sequence. Pro-
vided the necessary conditions for differentiability are met, applying the results of Proposition 4
means a necessary optimality condition with respect to the choice of ωs (σs) is:

λk
s (σs) = λm

s−1 (σs−1) + λk
s−1 (σs−1) , (20)

for s > 0, and:
λk

0 (σ0) = 0 (21)

These results replicate the common finding that dynamic multipliers on expectational constraints
generally exhibit non-stationarity. In models with participation constraints such as the social insur-
ance example, this is equivalent to the set of cross-sectional Pareto weights applied across agents
being non-decreasing over time. This observation is central to the recursive multiplier formulation
of Ramsey policy due to Marcet and Marimon (2015). It implies that agents who receive a series of
consecutive low income draws see their share of total resources diminish, exactly as in our social
insurance example. Long-run outcomes may be particularly adverse for these individuals. It is likely
that the allocation of resources in any steady state will be driven principally by the need to make
good on past promises, rather than the priorities contained in the underlying social welfare objective
Wt.

4. The Pareto approach to designing promises

This section explains our recursive Pareto criterion for choosing promise sequences. The benefit of
analysing time inconsistency through the apparatus of the promise-value function is that V({ωs}∞

s=t, xt)

can be treated as a standard preference ordering over promise sequences from period t onwards. Dif-
ferent generations of policymakers have different preferences regarding the overall promise sequence
that is chosen, just as different agents in a market economy will generally disagree about the overall

21



allocation of social resources. But this does not mean that Pareto gains cannot be found.35

4.1. Pareto e�ciency: de�nition

The promise-value functions V({ωs}∞
s=t, xt) for different values of t provide alternative rankings over

continuation promise sequences, given an inherited state vector. An ideal choice of promises would
be a time-consistent optimal choice. That is, a sequence {ωs}∞

s=0 with the property that there exists
no alternative sequence {ω′s}

∞
s=0 such that the policymaker in some period t would prefer to switch to

the continuation {ω′s}
∞
s=t rather than sticking with {ωs}∞

s=0, given an inherited state vector xt induced
by {ωt}∞

s=0. As Proposition 7 has confirmed, this is not possible. A looser desirability requirement is
that there should not exist an alternative sequence {ω′s}

∞
s=0 such that the policymaker in every period

t ≥ 0 would prefer to switch to the continuation {ω′s}
∞
s=t rather than sticking with {ωs}∞

s=t, again
given an inherited state vector induced by {ωs}∞

s=0. This is a far less demanding restriction to place
on choice, and one that seems uncontroversial. It is hard to justify an institution that every generation
would prefer to be rid of.

This verbal definition has considered Pareto efficiency with respect to the preference orderings of
every policymaker from period 0 onwards. Ultimately we are interested in a desirability criterion
that can be applied recursively. For this reason the formal definition does not fix the initial date at
zero:

Definition. A promise sequence {ω∗s }∞
s=t inducing state vector {x∗s+1}∞

s=t is Pareto efficient from
period t ≥ 0, if there is no alternative promise sequence {ω′s}∞

s=t such that for all τ ≥ 0:

V({ω′s}∞
s=t+τ, x∗t+τ)−V({ω∗s }∞

s=t+τ, x∗t+τ) ≥ ε

for some scalarε > 0, independent of τ.

The particular definition here is ‘weak’ Pareto criterion, in the sense that we include in the Pareto
set every promise sequence that is not strictly dominated by another for all policymakers.36 This
makes the Pareto set as large as possible, and this in turn is necessary if we are to find a promise
sequence that satisfies the above definition recursively.37 Note that the Ramsey promise sequence{

ωR
s
}∞

s=0 is Pareto efficient from period 0. It will never be possible to find an alternative sequence
that the policymaker in period 0 would strictly prefer. But it does not follow that the continuation of
the Ramsey sequence from t > 0,

{
ωR

s
}∞

s=t will be Pareto efficient from t.

35In Section 7 we make the parallel with a market economy explicit, showing that the outcome of our choice criterion can
be decentralised by a Walrasian mechanism that allows each generation of policymaker to trade the promises it makes
and the promises it keeps.

36Writing this condition in terms of ε, rather than as a strict inequality, rules out the possibility that the two value functions
converge to one another at the limit as τ → ∞. The definition therefore requires that there are no alternatives that
are strict improvements both in finite time and at the limit. This broadens still further the set of {ωs}∞

s=t that can be
included.

37Heuristically, a promise sequence {ω∗s }
∞
s=t such that ω∗t places a binding constraint on the policymaker at t is always

weakly dominated from t onwards by one that neglects this initial commitment. This means a Pareto efficiency concept
that is based on weak dominance could never be applied recursively whilst allowing for binding commitments to be
made. As we note in Section 7, this is a counterpart to the common observation in two-period overlapping genera-
tions models that the core is empty: every young generation and its successors can improve on a transfer scheme that
allocates resources to the current old.
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Discussion

An important feature of this definition is that it is applied to the ‘on-path’ preferences of policymak-
ers. That is, it takes as given that the policymaker in t + τ has inherited a state vector consistent
with the promise sequence {ω∗s }

∞
s=t, and asks whether they regret continued commitment to this se-

quence. An alternative possibility would be to compare sequences {ω∗s }
∞
s=t and {ω′s}

∞
s=t under the

assumption that choice between the two is made ‘once and for all’ in period t, and so the value func-
tion for the policymaker at t + τ when {ω′s}

∞
s=t is being considered includes some state vector x′t+τ,

induced by {ω′s}
∞
s=t, instead of x∗t+τ. This sort of ‘ex-ante’ approach to Pareto efficiency is similar to

the definition used by Farhi and Werning (2007, 2010), except that they apply it not just to the choice
of promises (and induced states) but to the entire allocation, including the variables that we include
in the inner problem.

It is possible to make sensible normative arguments for both sorts of definition. One advantage
of ours is that it depends on preferences that can actually be observed along the equilibrium path,
rather than on an ex-ante assessment of what future generations will want. As we show in Section 7,
it is the efficiency concept that is satisfied when policymakers from different generations are allowed
to trade the promises that they make and keep over time, in a Walrasian market setting.

More significantly for our present purposes, the definition that we have given preserves the ex-
clusive focus on choices that are subject to a time-inconsistency problem. If we did not treat the
inherited state vector as given for each generation, Pareto comparisons could be influenced by the
fact that later generations would prefer earlier generations to accumulate more capital, for instance.
This is an important normative consideration, but the standard practice in the policy design literature
is to leave control over variables set in t to policymakers alive in t or earlier.38 It is only when these
‘pre-t’ generations disagree that a time-inconsistency problem arises. Our definition focuses on Pareto
efficient resolutions to this disagreement alone. By contrast, Farhi and Werning (2007, 2010) consider
the Pareto frontier that is traced out as the social discount factor is varied. This has implications far
beyond Kydland and Prescott settings.

4.2. Recursive Pareto e�ciency

Once the definition of Pareto efficiency is established, recursive Pareto efficiency follows straightfor-
wardly:

Definition. A promise sequence {ω∗s }∞
s=0 is recursively Pareto efficient (RPE) if and only if the con-

tinuation sequence {ω∗s }∞
s=t is Pareto efficient from all periods t ≥ 0.

Heuristically, recursive Pareto efficiency requires not just that a dynamic promise sequence should
not be regretted by all current and future policymakers when it is first implemented, but also that it
should not come to be uniformly regretted in this manner later – once any benefits to initial genera-
tions have passed. There is no guarantee that Ramsey policy will satisfy this requirement. Ramsey
policy is Pareto efficient in period 0, but its continuation may not be thereafter.

38Of course, this does not stop these policymakers having an altruistic concern for future outcomes.
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5. Recursively Pareto-e�cient policies

This section explores the implications for policy of adopting a recursive Pareto criterion. In particular,
it provides conditions under which the recursive Pareto criterion can generically be satisfied, and
provides a general characterisation of the steady-state properties of the associated policy. This differs
systematically from Ramsey policy.

5.1. Recursive Pareto e�ciency: existence

In this subsection we prove a set of conditions under which the Pareto criterion can be satisfied re-
cursively. The necessary conditions for the result to go through are stated in terms of the properties
of the promise-value function and induced choice for the endogenous state variables. Sufficient con-
ditions on the primitives for these properties to hold are, in turn, stated in Propositions 1, 3, 5 and 6.
The main Proposition is as follows:

Proposition 8. Suppose the following conditions hold:

1. The promise-value function V
(
{ωs}∞

s=0 ; x0
)

is strictly quasi-concave in {ωs}∞
s=0 (or invariant where

the corresponding constraints do not bind).

2. The optimal choice of state variables for the inner problem, {x∗s }
T
s=1, is continuous in all elements of

{ωs}∞
s=0 for all T ≥ 0.

3. V
(
{ωs}∞

s=0 ; x0
)

is continuous in x0.

4. Ω (x0) is non-empty and convex.

Then there exists a sequence of promises {ωs}∞
s=0∈ Ω (x0) that satisfies recursive weak Pareto efficiency.

The proof of this Proposition, contained in the appendix, relies on a non-trivial fixed-point argu-
ment. It defines a correspondence from Ω (x0) to itself with the property that this correspondence
identifies strict Pareto improvements on any given {ωs}∞

s=t, from the perspective of some t ≥ 0.
A fixed point of the correspondence, whose existence follows from Kakutani’s theorem, must be a
promise sequence that satisfies the weak Pareto criterion recursively.

Conditions 1 to 4 in the Proposition should be viewed as sufficiency requirements for existence:
they are not necessary. In many interesting examples they may not be satisfied, but this does not rule
out the possibility that the recursive Pareto criterion could be satisfied. This includes the dynamic
capital tax problem that we consider as our Example 2.

5.2. Recursive Pareto e�ciency: long-run characterisation

This section characterises the steady-state outcomes that obtain when RPE is used to design pol-
icy. These outcomes will be shown to differ systematically from steady-state outcomes under Ram-
sey policy. The main general characterisation result is expressed in terms of the multipliers on the
promise constraints (17) and (18):
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Proposition 9. Consider a promise sequence {ωs}∞
s=0 inducing a sequence of state vectors {xs+1}∞

s=0 from
initial state vector x0. If this promise sequence satisfies RPE then it is not possible to find a time period τ ≥ 0
and a scalar ε > 0 such that either:

λk
s
(
σ′
)
− β ∑

σ∈Σ

P (σ′|σ) P (σ)

P (σ′)

[
λm

s (σ) + λk
s (σ)

]
≥ ε (22)

for all periods s ≥ τ, or:

λk
s
(
σ′
)
− β ∑

σ∈Σ

P (σ′|σ) P (σ)

P (σ′)

[
λm

s (σ) + λk
s (σ)

]
≤ −ε (23)

for all periods s ≥ τ.

The measure P(σ′|σ)P(σ)
P(σ′) here is a ‘reverse’ transition probability that the predecessor to an observed

state σ′ was state σ. It satisfies:

∑
σ∈Σ

P (σ′|σ) P (σ)

P (σ′)
= 1. (24)

In the social insurance example, σ is the number of time periods that have elapsed since the agent
last received a high income draw. In this case, for any σ′ > 0 it must be that σ = σ′ − 1, so the
probability that σ′ was preceded by σ′ − 1 is one and the probability that it was preceded by any
other state is zero. When σ = 0 the agent has just received a high income draw and the contemporary
participation constraint generally binds. In this case lagged multipliers do not affect the allocation.39

The linear-quadratic inflation bias and capital tax examples are both fully deterministic, so for these
the probabilistic term can be dropped.

The main implication of this Proposition is that the recursive Pareto criterion places limits on the
long-run trade-off that is struck between the benefits from making promises and the costs of keeping
them. The first multiplier terms on the left-hand-side of inequalities (22) and (23) are the shadow
costs in period s of increasing the promise that is ‘kept’ in state σ in that period, ωs (σ), by a unit. The
second multiplier terms capture the shadow benefits from simultaneously increasing the promise
that is ‘made’ in period s for the same state in s + 1, i.e. ωs+1 (σ) – also by a unit. The discount
factor β captures the fact that this increase will occur one period later. For a promise sequence to be
recursively Pareto efficient, uniform increases or decreases in promises in all time periods cannot be
to the benefit of all policymakers. The inequalities ensure that such uniform improvements are not
possible.

This result has important implications for the character of RPE policy in steady state, under the
assumption that such a state exists. We state these formally as a Corollary.

Corollary. Consider a promise sequence {ωs}∞
s=0 inducing a sequence of state vectors {xs+1}∞

s=0 from initial
state vector x0. Suppose that the promise sequence and sequence of state vectors converge to steady-state values
ωss and xss respectively, and that the multipliers on constraints (17) and (18) converge to λm

ss (σ) and λk
ss (σ)

respectively. Then:

39That is, the value of λm
ss (0) + λk

ss (0) is independent of the value of λk
ss (0).

25



1. The promise sequence satisfies RPE only if for all σ′ ∈ Σ:

λk
ss
(
σ′
)
= β ∑

σ∈Σ

P (σ′|σ) P (σ)

P (σ′)

[
λm

ss (σ) + λk
ss (σ)

]
. (25)

2. If the promise-value function V (·, x) is quasi-concave for all x ∈ X, then the promise sequence satisfies
RWPE whenever (25) holds.

The results here are analogous to a standard first-order condition. They provide a necessary con-
dition for RPE to hold, which becomes sufficient when the relevant objectives are quasi-concave.40

In all three examples, condition (25) implies a downward drift in the multiplier on promise-keeping
constraints – the left side of the equation – relative to the multiplier on the relevant promise-making
constraints and/or past promise keeping constraints – the right side. This drift occurs at the rate of
pure time preference, β. This feature is notable, because it contrasts with the outcome under Ramsey
policy, characterised by (20):

λk
s (σs) =

[
λm

s−1 (σs−1) + λk
s−1 (σs−1)

]
(26)

This expression implies a multiplier recursion similar to (25), but without any downward drift. In-
stead, the coefficient on past promise-making constraints under Ramsey-optimal policy is fixed to
one. Intuitively, the Ramsey policymaker trades off the benefits today of making a promise for to-
morrow with the costs tomorrow of keeping that promise. Under RPE policy, the enduring cost today
of keeping yesterday’s promise is assessed simultaneously to the benefit from making an improved
promise for tomorrow. This implies a crucial difference in timing: keeping a promise today is more
onerous than keeping one tomorrow, so long as β < 1.

In models with infinite-horizon constraints of the form (4), the multipliers are non-stationary, and
often will not converge to a steady state. This in turn can impart uncomfortable long-run properties,
such as the absence of long-run redistribution in the social insurance example. It is also the driving
force behind the immiseration result in dynamic models of asymmetric information, and the conclu-
sion of Straub and Werning (2015) that Ramsey-optimal capital taxes in the Judd (1985) framework
can imply ‘corner’ outcomes, with zero long-run consumption for workers. When RPE policy is in-
stead considered, the downward drift in the multipliers generally allows steady state to exist, and the
continued satisfaction of the Pareto criterion ensures that its properties are more benign than these
extreme cases.

In many other models of interest, Ramsey policies do converge to a steady state with constant
multipliers. This is true, for instance, in both the inflation bias example and the capital tax example
that we have outlined above. In these cases it is clear that the steady-state version of (26) will directly
contradict (25). Thus the steady state of Ramsey policy does not satisfy the Pareto criterion. We
interpret this as implying that the steady state of Ramsey policy cannot be justified in isolation from
transition dynamics. To take the most well-known example, taxing capital income is only a bad idea
after the initial high-tax Ramsey trajectory.
40Though the intuition behand Part 2 of the Corollary is standard, the dynamic horizon causes some complications. We

provide a proof in the Appendix for completeness.
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Proposition 9 relates solely to long-run outcomes. It does not specify any properties of the transi-
tion dynamics associated with RPE promise sequences. Indeed, if the value function is quasi-concave
then it follows from the Corollary that if one promise sequence satisfies RPE then any promise se-
quence that converges to the same ωss and induces convergence of the state vector to the same xss

must also satisfy RPE.41 This leaves us with significant indeterminacy in the solution concept as pre-
sented so far. In the next section we consider how to resolve this.

6. Transition dynamics and policy rules [under revision]

The results of Section 5 are important because they provide a justification for policies that converge
to outcomes that are different from the long-run outcomes of Ramsey policy. This matters because
the long-run outcomes under Ramsey policy have often been treated as desirable per se – an idea
formalised in the ‘timeless perspective’ approach of Woodford (2003). Yet in order to use our ap-
proach to devise practical rules for policymaking we need to address the fact that many transition
paths may be consistent with RPE policy. This section proposes one way to do this, resulting in eas-
ily interpretable policy rules across the different examples that we consider. It exploits the additive
separability of the objective and constraint functions over time, to ensure that policy choices over
control variables, at, will be time-invariant functions of t-dated objects alone. The aim is to translate
the general theory into practice, and for this reason we find it simplest to explain our approach by
direct reference to our chosen three examples. We consider them in turn.

Example 1: Linear-quadratic in�ation bias

The inner problem for this example, viewed in period 0, is the following:

max
{πt,yt}∞

t=0

−1
2

∞

∑
t=0

βt
[
π2

t + χ (yt − ȳ)2
]

subject to:

πt = γyt + βωt+1 (27)

ωt = γyt + βωt+1 (28)

and given {ωt}∞
t=0. Necessary conditions for an optimum are:

−πt + λm
t = 0 (29)

−χ (yt − ȳ)− γ
(

λm
t + λk

t

)
= 0 (30)

where λm
t and λk

t are the multipliers on the promise-making and promise-keeping constraints (27)
and (28) respectively. We know that if the chosen policy is to satisfy recursive Pareto efficiency, the

41This property will in fact hold regardless of quasi-concavity, but quasi-concavity is sufficient to confirm RPE once a
steady-state satisfying (25) is found.
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only possible steady state is such that β
(
λm

ss + λk
ss
)
= λk

ss. This is the implication in the current setting
of the Corollary to Proposition 9.

The question is how to choose the complete {ωt} sequence – or, equivalently, how to restrict the
relative sizes of the multipliers λm

t and λk
t . Since the setting is a purely stationary one, it is clear

that the most appealing choice will be one that delivers similar stationarity in the resulting policy
rule. One of our two main motivations for departing from Ramsey policy was that time-varying
policies for a stationary economic system seemed contrary to the demands of practical institutional
design. For this reason we take the limiting restriction on the multipliers that is necessary according
to Proposition 9, and impose it every time period. That is, we set:

β
(

λm
t + λk

t

)
= λk

t (31)

for all t. Notice that this is a within-period restriction linking the shadow cost of keeping promises
in period t to the shadow benefit of making promises for t + 1. This contrasts with the equivalent
Ramsey restriction, which would equate the shadow costs and benefits associated with changing a
single promise:

λk
t =

(
λm

t−1 + λk
t−1

)
Whereas the Ramsey policymaker optimises distinctly over each promise, the RPE policymaker in
period t is behaving as if they face a linear ‘pricing’ restriction linking the promise that they can
make for tomorrow to the promise that they keep today. There is a very close link here with the role
of intergenerational transfers in achieving Pareto improvements in textbook overlapping generations
models of the sort introduced by Samuelson (1958). We will formalise this intuition more fully in
Section 7 below.

Condition (31) allows the optimality conditions from the inner problem to be condensed to a single,
time-invariant restriction:

πt = (1− β)
χ

γ
(ȳ− yt) (32)

When substituted into the original New Keynesian Phillips Curve (6), this gives a first-order differ-
ence equation in yt. This equation has a unique non-explosive solution, in which:

yt =
(1− β)2 χ

(1− β)2 χ + γ2
ȳ

πt =
(1− β) χγ

(1− β)2 χ + γ2
ȳ

for all t. It is straightforward to check that this is also the solution to the simple problem of finding
values for yt and πt that maximise the policy objective on the set of entirely constant policies. This
provides a useful endorsement of our approach. In a purely stationary setting such as this, a policy
that does not have the transition dynamics associated with Ramsey must be a constant policy: there
are no state accumulation dynamics to complicate matters. The fact that RPE policy is able to select
the best constant policy contrasts with the ‘timeless’ approach of selecting the Ramsey steady-state
policy. Figure 4 compares the paths of inflation and output under Ramsey and stationary RPE pol-
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Figure 4: Ramsey and stationary RPE policy in the inflation bias example

icy.42 There is a visible sense in which RPE policy delivers a convex combination of the short-run
and long-run outcomes from Ramsey. It has inflation permanently above zero, which permits a small
positive output gap to exist in perpetuity.43

Example 2: Capital taxation

The inner problem for this example can be written as follows:

max
{ct,lt,kt+1}∞

t=0

∞

∑
t=0

βt [u (ct)− v (lt)]

subject to:

ct + kt + g ≤ F (kt, lt) + (1− δ) kt (33)

uc,tct − vl,tlt + uc,tkt+1 ≤ uc,tct − vl,tlt + βωt+1 (34)

ωt ≤ uc,tct − vl,tlt + βωt+1 (35)

and given {ωt}∞
t=0, k0. Once again we denote the multiplier on the promise-making constraint (34)

by λm
t and on the promise-keeping constraint (35) by λk

t . The resource multiplier is denoted ηt.

42Parameter values are as before: β = 0.96, γ = 0.024, χ = 0.048 and ȳ = 0.1.
43Recall that the New Keynesian Phillips Curve (6) is not vertical in the long run, so permanently positive inflation is

consistent with output being permanently above its flexible price level.

29



Necessary optimality conditions with respect to ct, lt and kt+1 are:

uc,t − ηt − λm
t ucc,tkt+1 + λk

t (uc,t + ucc,tct) = 0 (36)

−vl,t + ηtFl,t − λk
t (vl,t + vll,tlt) = 0 (37)

−ηt + βηt+1 (1 + Fk,t+1 − δ)− λm
t uc,t = 0 (38)

Once more we need a way to fix the promise sequence, and hence place a restriction on λm
t and λk

t in
each time period. Again, to be consistent with RPE policy this must ensure β

(
λm

t + λk
t
)

approaches
λk

t in steady state. In this case the choice of restriction is less immediate. Capital accumulation
clearly means it is not possible to choose constant values for all endogenous variables in all periods.
Instead, we make use of the additively separable structure of the problem over time to arrive at
simple, intuitive policy rules.

Equation (37), the first-order condition with respect to lt, is a cross-restriction linking t-dated vari-
ables alone. To the extent that dynamics enter it, these operate only indirectly through the resource
multiplier, ηt. Once the capital accumulation decision has determined the shadow value of resources
in t, the optimal labour supply decision has effectively been ‘orthogonalised’ from any dynamic as-
pects of choice. This is not true of the choice of ct for arbitrary promise sequences. Condition (36)
contains a term in kt+1, which derives from the fact that a change in period-t consumption will af-
fect the period-t value of any capital savings carried from t to t + 1, and hence the ease of satisfying
the promise-keeping constraint. Yet it is possible to place a restriction on the promise-keeping and
promise-making multipliers in such a way that the consumption choice is likewise orthogonalised
from all variables that influence outcomes at t + 1. Consider the condition:

β
(

λm
t + λk

t

)
ωt+1 = λk

t ωt (39)

In words, the t-dated shadow value of the promise made for t + 1 should equal the t-dated shadow
cost of the promise kept in t. This is consistent with our required restriction for steady state, since any
steady state must involve the promises in t and t+ 1 converging to one another, leaving a steady-state
restriction equivalent to (25).

Condition (39) simplifies considerably when the promise values are replaced by the objects from
the inner problem that correspond to them in (34) and (35).44 In that case, we have:

λm
t uc,tkt+1 = λk

t (uc,tct − vl,tlt) (40)

Substituting this into (36) gives:

uc,t − ηt + λk
t

(
uc,t + ucc,t

vl,t

uc,t
lt

)
= 0 (41)

We now have an expression that depends on t-dated objects alone. It can be combined with the

44That is, setting ωt − βωt+1 = uc,tct − vl,tlt and βωt = uc,tkt+1. Note that using these as equalities is without loss of
generality: in the event that constraint (34) and/or (35) is slack, the corresponding multiplier will be zero and the
substitution will be of no consequence.
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optimality condition on labour supply to eliminate the promise-keeping multiplier λk
t , and arrive at

an interpretable, time-invariant condition for RPE policy:

uc,t − ηt

uc,t + ctucc,t
vl,t lt
uc,tct

=
vl,t − ηtFl,t

vl,t + vll,tlt
(42)

The objects in the numerators here are immediately recognisable as policy ‘wedges’: on the left-
hand side, the gap between the marginal value of consumption resources for the representative agent
and the shadow cost of resources; on the right-hand side, the gap between the marginal utility loss
from an extra unit of work and the shadow value of the resources it generates.

The objects in the denominators are analogous to marginal revenue terms in textbook monopoly
analysis, which in turn depend on inverse elasticities. In the decentralised economy with taxes, the
effective post-tax price of consumption in period t is uc,t, and the post-tax wage in period t is vl,t.45 An
increase in lt by one unit will increase total wage income by an amount wt + lt

dwt
dlt , where wt denotes

the wage rate. This is the denominator on the right-hand side. An increase in ct has more complicated
effects. It increases the period-t cost of consumption by an amount pt + ct

dpt
dct

, where pt denotes the
price of consumption, but it will also revalue any capital income that the consumer is holding in
period t. A general assessment of the value of this will be time-contingent: revaluing capital income
may be desirable after it has been accumulated, but promising to do so beforehand may not. This is
the time-inconsistency problem once more. But precisely through imposing restriction (39), we have
restricted attention in each period to the revaluation only of that share of consumption that is earned
through work in period t: vl,t lt

uc,tct
, or wt lt

ptct
. This accounts for the final fraction in the denominator on the

left-hand side.
Taken together, the condition states that it should not be possible for the policymaker to benefit

from a joint change in period-t consumption and labour supply that respects budget balance, holding
constant the net value of expenditure from capital income in each period. The left-hand side is the
net benefit from increased consumption per unit change in the consumer’s budget; the right-hand
side is the net cost from increased labour supply.

Finally, it is possible to use conditions (37) and (41) in (38) to obtain a restriction linking the capital,
consumption and labour supply wedges in all time periods. We have:

kt+1 [βηt+1 (1 + Fk,t+1 − δ)− ηt] = ct
ηt − uc,t

1− vl,t lt
uc,tct

1
εc

t

+ lt
vl,t − ηtFl,t

1 + 1
εl

t

(43)

where we use εc
t to denote the Frisch elasticity of consumption in period t with respect to its price,

and εl
t to denote the Frisch elasticity of labour supply in t. This equation captures a very intuitive

trade-off. The policymaker would like, if possible, to ensure that savings are at a sufficient level to
equate the shadow value of capital saved for t + 1 with its shadow cost at t. The benefit of greater
savings is captured by the left-hand side of the expression. But in order to encourage greater savings,
consumers must be endowed with sufficiently high disposable income. The higher is disposable in-
come, the higher will be current consumption, and the lower will be labour supply. The net cost of

45Clearly this is true up to a normalisation of the price index.
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Figure 5: Capital tax rates and capital transition under RPE policy

these two effects is captured, in turn, by the two terms on the right-hand side of the expression. Over-
all, the policymaker is thus trading off the costs and benefits of providing consumers with spending
power. This is the underlying policy problem once time-inconsistent dynamics have been filtered
out.

Conditions (42) and (43) together with the resources and implementability condition are jointly
sufficient to solve for a dynamic allocation, together with the implied values for policy instruments.
Figure 5 charts the evolution of the capital tax rate and the capital stock under differing values for
k0, given this solution approach.46 By contrast with the extreme time-sensitivity of Ramsey policy, it
is evident that RPE tax policy departs from steady state only to the extent that the underlying capital
stock does likewise. When capital is above steady state, the policymaker has a reduced incentive to
provide wealth to the representative consumer, and capital taxes are relatively high. The converse is
true when capital is below steady state: in this case is a greater incentive to encourage accumulation,
and capital taxes are low.

Example 3: Insurance with limited commitment

In the third example, the inner problem can be written as:

max
{ct(σ),c

p
t }∞

t=0

∞

∑
t=0

βt

[
(1− µ)

∞

∑
σ=0

(1− p)σ pu (ct (σ)) + µu(cp
t )

]

46Parameter values are as detailed in Section 2.3.
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subject to:

(1− µ)
∞

∑
σ=0

(1− p)σ pcs (σ) + µcp
s ≤ [1− (1− µ) p] yl + (1− µ) pyh (44)

V (σ) ≤ u (ct (σ)) + βEtωt+1
(
σ′
)

(45)

ωt (σ) ≤ u (ct (σ)) + βEtωt+1
(
σ′
)

(46)

and given promise sequences {ωt (σ)}∞
t=0. Condition (45) here is the promise-making constraint, and

condition (46) is the promise-keeping constraint. Placing multiplier ηt on the resource constraint,
λm

t (σ) on the promise-making constraint and λk
t (σ) on the promise-keeping constraint,47 necessary

optimality conditions for this problem are:

uc,t (σ)
(

1 + λm
t (σ) + λk

t (σ)
)
− ηt = 0 (47)

up
c,t − ηt = 0 (48)

where up
c,t is used to denote the marginal utility of consumption in period t for permanently poor

agents. Thus λm
t and λk

t play the usual role in this class of problem, augmenting the policymaker’s
underlying cross-sectional Pareto weights. Agents whose promise-making or promise-keeping con-
straints bind in period t will receive a more generous allocation than others.

To progress further, we need to impose a restriction on the relative values of λm
t and λk

t . Consistent
with the results of Proposition 9, in any steady state these must satisfy:

λk
ss (σ) = β

[
λm

ss (σ− 1) + λk
ss (σ− 1)

]
(49)

for σ > 0, with λm
t (0) set to a sufficiently high value to ensure continued participation by those

who have received a positive wealth shock. Again, we are interested in policies that will not exhibit
transition dynamics per se. In a manner similar to the inflation bias example, this can be done by
requiring (49) to hold in every time period. That is, we impose the restriction:

λk
t (σ) = β

[
λm

t (σ− 1) + λk
t (σ− 1)

]
(50)

for all t. This gives us a within-period multiplier recursion, which can be solved backwards to elimi-
nate the terms in λk:

λk
t (σ) =

σ

∑
s=1

βsλm
t (σ− s) (51)

If we conjecture that the solution will set ωt (σ) > V (σ) for all σ > 0, which is necessary if low types
are always to be benefitting from insurance, then λm

t (σ) = 0 for all σ > 0, and we have:

λk
t (σ) = βσλm

t (0) (52)

Substituting this into (47), and dropping the redundant dependence of λm
t on σ, cross-sectional allo-

47These latter two multipliers are normalised by relevant population weights – i.e., a factor (1− µ) (1− p)σ p.
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cations now satisfy:
uc,t (σ) =

ηt

1 + βσλm
t

(53)

This is a time-invariant condition, which will combine with the static resource constraint to deliver
a time-invariant consumption distribution and constant resource multiplier in all periods. Under
this solution, all agents’ consumption allocations are determined by reference to those whose current
participation constraint binds. It is instructive to contrast condition (53) with the equivalent term
that emerges under Ramsey policy. In that case the following condition is well known to characterise
allocations across agents:48

uc,t (σ) =
ηt

1 + λm
t−σ

(54)

That is, an agent whose participation constraint was last binding in period t − σ retains a cross-
sectional Pareto weight in t that is equal to the shadow value of promise-making in t− σ. Augmenta-
tions to the cross-sectional weights do not exhibit decay. Yet the total quantity of resources available
each period is unchanging. This implies that Pareto weights will be continually bid up over time. A
value of λm

t that would be sufficient to divert a substantial share of resources to high-income agents
when all other Pareto weights are set to 1 will be inadequate to do so when a large share of the pop-
ulation has already experienced a high-income shock in the past. This process causes the resource
multiplier to increase over time, to the point where the consumption of permanently low-income
types is eventually driven to its autarky lower bound – as set out in section 2.3. In the long run, the
policymaker is completely bound by past commitments.

Condition (53) departs from this in two regards. First, instead of placing an explicit dynamic
link on promise multipliers from one period to another, it links the cross-sectional distribution of
these multipliers, across agents at t with different earnings histories. Second, and more substan-
tively for policy, it allows Pareto weights to decay. This means that past promise commitments never
come to dominate allocations in the same manner as under Ramsey policy, and redistribution to per-
manenetly low-income agents will take place in perpetuity. Figure 6 illustrates by contrasting the
consumption of permanently low-income types under RPE and Ramsey policy, based on the same
log-utility calibration detailed in Section 2.3. The absence of any downward drift under RPE policy
reflects a constant value for the resource multiplier.

Consistent with its formal definition, RPE policy continues to deliver desirable redistribution as
time progresses. After a relatively short horizon it comes to deliver higher welfare than optimal
choices given the continuation sequence of Ramsey promises. Figure 7 illustrates this. At each point
in time it charts the consumption level that would deliver an equivalent value for social welfare to
the Ramsey and RPE continuations if this consumption level were allocated uniformly to all agents
in the population, in perpetuity. This is normalised relative to the first-best consumption level.49 The
figure indicates that the relative superiority of the Ramsey promise path is reversed after 18 years.
After this time, all policymakers would strictly prefer to switch to RPE policy: continuation with
Ramsey no longer satisfies the Pareto criterion.

48See, for instance, Marcet and Marimon (2015)
49That is, relative to the optimal allocation when participation constraints are ignored. A utilitarian policymaker would

always share resources euqally in such circumstances.
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Figure 6: Ramsey and RPE policy: consumption of low-income agents in the limited commitment
example
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Figure 7: Ramsey and RPE policy: welfare comparisons in the limited commitment example
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The RPE allocation has interesting implications for the appropriate structure of policy interven-
tions. Influential work by Alvarez and Jermann (2000) has illustrated how the Ramsey allocation in
limited commitment models can be decentralised simply by adding borrowing constraints to a stan-
dard Walrasian setting. These constraints prevent agents from realising the value of their earnings
in high-income states before these states have been realised. This is a necessary restriction given the
scope to default on past debts and consume in autarky. The fact that all other aspects of the Ramsey
solution can be decentralised by Arrow-Debreu trades reflects the fact that relative Pareto weights
are constant from t to t + 1 in the Ramsey allocation across all pairs of all agents who do not receive
high-income shocks. This means there is no role for savings taxes. Specifically, we can define the
ex-post marginal savings wedge, τs

t+1, by:

βuc,t+1
(
1− τs

t+1

)
uc,t

:=
βηt+1

ηt
(55)

That is, the tax wedge that is implicitly applied relative to the shadow cost of transferring public
funds through time, under any given allocation. Under the Ramsey allocation this wedge is zero
whenever the agent does not receive a high-income draw in t + 1: this follows immediately from
(54). Under the RPE allocation it satisfies:

(1− τs
t+1) =

1 + βσ+1λm
t+1

1 + βσλm
t

(56)

In the stationary solution λm
t is constant over time, implying a positive tax wedge that is monoton-

ically decreasing in σ, approaching zero for those whose last high-income shock was many periods
in the past. Hence there is effectively a progressive tax on savings. This encourages agents with
high-income draws to frontload their consumption, and thereby ensures that prior wealth shocks do
not come to dominate the long-run distribution of consumption in the economy.

7. RPE policy and promise trading [in progress]

There is a very close relationship between the RPE policies that we have introduced and the market
interactions among successive generations that have been studied in detail in overlapping genera-
tions models from Samuelson (1958) onwards. The purpose of this brief section is to highlight these
similarities, since the parallels can help to clarify our earlier analysis.

Consider a textbook two-period, pure-endowment OLG economy in which agents’ endowments
are higher when they are young than when they are old. These endowments are constant over time,
and denoted yy and yo. Agents face an infinite array off intertemporal consumption prices, denoted
{pt}∞

t=0, at which they are free to trade their endowments. These trades are conducted to maximise
their ex-ante welfare, assessed according to a standard utility function:

Ut := u
(
cy

t
)
+ u (co

t+1)
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The budget constraint is thus:

pt
(
cy

t − yy)+ pt+1 (co
t+1 − yo) ≤ 0 (57)

Market clearing requires that the outcome of this choice problem for all t ≥ 0 should satisfy cy
t + co

t =

yy + yo, with co
0 the consumption level for the initial old generation, which is unrestricted.

This problem can be recast as a choice of promises over time, where the promises in question are
intergenerational transfers. Denoting by ωk

t the transfer that is delivered through market trades by
a generation when it is young, and ωm

t+1 the transfer that the same generation anticipates when it is
old, we have:

ωk
t := yy − cy

t (58)

ωm
t+1 := co

t+1 − yo (59)

Trivially, the problem for each generation can be mapped into one of choosing promises to maximise
a value function expressed over these promises, subject to a linear price vector:

max
{ωk

t ,ωm
t+1}

V
(

ωk
t , ωm

t+1

)
:= u

(
yy −ωk

t

)
+ u (yo + ωm

t+1)

subject to:
pt+1ωm

t+1 ≤ ptω
k
t (60)

Market clearing then requires that ωk
t = ωm

t for all t > 0. The transfer to the initial generation of
old agents, ωk

0, is not restricted by a market clearing condition. The efficiency properties of the V
function in the choice of promise vectors are very similar to the properties of the value function for
the inner problem that we defined in Section 3, V

(
{ωt}∞

t=0 , x0
)
.

A Pareto efficient sequence of promises can be defined in the same manner as in Section 4 above,
with the same distinction between weak and strict definitions. Here too it will not be possible to
satisfy the strict definition recursively, since each new young generation will always benefit from
eliminating any transfers to the initial old.50 A weakly Pareto efficient promise sequence from period
τ onwards is then an array {ωt}∞

t=τ such that there does not exist an alternative sequence {ω′t}
∞
τ with

the property:
V
(
ω′t, ω′t+1

)
−V (ωt, ωt+1) ≥ ε > 0

for all t ≥ τ. A sequence is recursively Pareto efficient if (and only if) it satisfies this definition for all
τ ≥ 0.

In this setting, a promise sequence that induces convergence in allocations to a steady state can be
consistent with recursive Pareto efficiency only if marginal utilities satisfy the following relationship
in steady state:

u′
(
cy

ss
)
= u′ (co

ss) (61)

If convergence were to any other steady state, a uniform increase or reduction in promises relative

50This reflects the well-known fact that the core is empty in OLG models.
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to their steady-state values could strictly increase the welfare of all generations, once allocations had
come sufficiently close to steady state. As is well known, this efficient allocation is decentralised by
a price sequence with the property that the real interest rate converges to one, i.e.:

lim
t→∞

(
pt+1

pt

)
= 1 (62)

Convergence to this steady state is not the only possible outcome that could satisfy recursive Pareto
efficiency. In precisely this setting, Grandmont (1985) highlighted the possibility of Walrasian allo-
cations that exhibit limit cycles in the real interest rate, and thus in allocations, when income effects
are large enough. These cycles cannot be Pareto-dominated for all generations at the limit. What
is required for recursive Pareto efficiency is that there should never come a time period τ such that
either the inequality:

u′
(
cy

t
)
− u′ (co

t ) ≥ ε > 0

holds for all t ≥ τ, or the converse:

u′
(
cy

t
)
− u′ (co

t ) ≤ −ε < 0

for all t ≥ τ. This is a direct analogue of Proposition 9 above.
The similarities between RPE outcomes in the OLG and Kydland-Prescott already appear substan-

tial. In both cases it is only a weak definition of Pareto efficiency that can be applied recursively, and
in both cases the RPE requirement places a restriction on long-run outcomes alone, not the transition.

We can go further by examining an analogue to the OLG market mechanism as a ‘decentralisation’
scheme for RPE allocations in Kydland and Prescott problems. The promise objects featuring in
constraints (17) and (18) for any given t can be divided into promises made at t for t + 1, ωm

t+1, and
promises kept at t, ωk

t .51 There is no technical barrier to then studying a variant of the inner problem
in which separate sequences

{
ωm

t+1

}∞
t=0 and

{
ωk

t
}∞

t=0 are applied to promise-making and promise-
keeping sides of the restrictions respectively. The value of this problem in period 0 can be denoted
V
({

ωk
t , ωm

t+1

}∞
t=0 , x0

)
. If ωk

t = ωm
t for all t > 0 then this object is equal to the value function that

we have already used extensively, V
(
{ωt}∞

t=0 , x0
)
. When the constraints are of the infinite-horizon

form, the shadow cost from increasing ωk
t by a unit is βtλk

t , and the shadow benefit from increasing
ωm

t+1 by a unit is βt+1 (λk
t + λm

t
)
, where λk

t and λm
t are the multipliers on the period-t promise-keeping

and promise-making constraints respectively.
Consider now a sequential market trading mechanism, whereby the policymaker in each period t

has the capacity to choose ωk
t and ωm

t+1, subject to a linear budget constraint:

pt+1 (ω
m
t+1 − ω̄t+1) ≤ pt

(
ωk

t − ω̄t

)
(63)

The objects {ω̄t}∞
t=0 can be treated as ‘endowment’ values for the promises: values that would obtain

in the absence of any trade. In the OLG setting, where the promises correspond to intergenerational
transfers, the equivalent endowment values are zero – hence their absence from the equivalent con-

51The ωm
t+1 objects enter on the left-hand side of (17) and (18), and the ωk

t objects on the right-hand side of (18) alone.
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straint (60).
Given an endowment sequence {ω̄t}∞

t=0 and an initial state vector x0, we can define a promise-
trading equilibrium as a sequence of promises

{
ωk∗

t , ωm∗
t+1

}∞
t=0, prices {pt}∞

t=0 and endogenous states{
x∗t+1

}∞
t=0 such that:

1. There is market clearing in promises: ωk∗
t = ωm∗

t for all t > 0

2. Choices are sequentially optimal for each policymaker:{
ωk∗

t , ωm∗
t+1

}
∈ arg max

{ωk
t ,ωm

t+1}
V
({

ωk
s , ωm

s+1

}∞

s=t
, x∗t
)

subject to (63) and given ωk
s = ωk∗

s and ωm
s+1 = ωm∗

s+1 for all s > t.

3. The endogenous states
{

x∗t+1
}∞

t=0 solve the inner problem given
{

ωk∗
t , ωm∗

t+1

}∞
t=0.

As an equilibrium concept this is almost identical to the Walrasian mechanism analysed in the OLG
setting above, the only major complication being the need to allow for endogenous evolution of the
state vector.

Optimal choice by the policymaker in each time period implies the following condition:

pt+1

pt
=

β
(
λk

t + λm
t
)

λk
t

(64)

From Proposition 9 and its Corollary, we know that if an allocation is recursively Pareto efficient
then the fraction on the right-hand side of (64) cannot converge to any value other than unity. This
implies, exactly as in the OLG case, that the intertemporal relative price of promises must converge
to one, if it converges at all.

The analogue to the OLG setting sheds important light on the question of transition dynamics
that were studied in our three specific examples in Section 6. There, we noted that the RPE desir-
ability concept alone was not sufficient to deliver a unique transition, though in each case it was
possible to find a restriction on the multipliers that ensured the final policy outcome took a simple,
time-invariant form. Resolving the multiplicity is equivalent to fixing a particular sequence for the
‘endowment’ promises {ω̄t}∞

t=0. To see this, note that (63) and (64) will combine to give:

β
(

λk
t + λm

t

)
(ωm

t+1 − ω̄t+1) = λk
t

(
ωk

t − ω̄t

)
(65)

where equality follows from complementary slackness.
It is precisely a restriction of this form that was necessary to obtain simple policy rules in our three

examples.52 In the inflation bias and limited commitment models, we implicitly selected a value
for ω̄t in each period that was consistent with an equilibrium supporting price ratio, pt+1

pt
, equal to

one. In the capital tax example, we selected a value for ω̄t equal to zero. Both cases could be seen as

52Whether these rules will in turn be consistent with a unique RPE outcome is an additional question that we leave unan-
swered. As noted above, Pareto efficient limit cycles are possible in the OLG setting, so there seems no good reason to
rule them out in general Kydland and Prescott problems.
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ways to give equal treatment to different periods’ policymakers – either by facing them with common
prices, or providing them with common endowments. Which of these provides the more appealing
normative solution may well vary from case to case. It may additionally be possible to provide a
positive motivation for selecting certain arrays of endowments, for instance based on the promises
that would implicitly obtain in an inefficient Markovian equilibrium. This seems an interesting area
for further work.

8. Conclusion

Macroeconomists are frequently asked the basic normative question ‘How should policy be designed?’
The obvious response is that it should be chosen to be best according to an accepted social welfare
criterion. The difficulty in Kydland and Prescott problems is that even given such a criterion, what
is ‘best’ depends on the time period in which choice is viewed. In order to provide policy advice, we
cannot avoid asking ‘Best for whom?’

When commitment devices are present, as we have assumed, policy is allowed to be designed
once-and-for-all in period zero. This means it is clearly possible to choose policy so that it is best for
period zero, as Ramsey policy does. Since the economist is herself positioned in period zero when
analysing the problem, it is tempting to view this as a correct response to ‘Best for whom?’

Our paper has implicitly taken a different perspective. To justify this, it is useful to draw a parallel
with the classic social choice literature initiated by Arrow (1951). The focus of this literature was on
devising general choice procedures for environments with multiple competing preferences. It was
treated as axiomatic that dictatorship was an undesirable feature of a choice rule. The point is that
there may be more fundamental principles relating to appropriate social choice that are not reflected
in the basic social welfare criterion. Just because the initial generation can impose its preferences on
all subsequent generations does not mean that it should.

For this reason it is important to study alternative normative choice procedures in Kydland and
Prescott problems. This paper provides one such alternative. As we have discussed at length, by
retaining recursive applicability our Pareto criterion overcomes many of the implausible features
associated with Ramsey policy. The transition dynamics of policy depend only on the economy’s
natural state vector, and long-run outcomes are meaningfully desirable.

Though our focus has been normative, the policies that result have interesting parallels with re-
cent positive analysis of commitment problems by Sleet and Yeltekin (2006) and Golosov and Iovino
(2014). These authors focus on the best reputational equilibria that can be supported in dynamic
models of asymmetric information, with no aggregate endogenous states. They show that the re-
sulting policies are equivalent to Ramsey-optimal strategies for a policymaker whose discount factor
exceeds that of the private sector. This occurs because future generations’ welfare must be given suf-
ficient weight in order for the equilibrium to be sustained over time. Our recursive Pareto criterion
similarly ensures that later generations do not inherit an excessive burden of past promises, though
by a very different route. In models without state variables, it is consistent with policy that max-
imises steady-state welfare. The relationship between policy that is recursively Pareto efficient and
policy that is sustainable in a reputational equilibrium is a priority for future work.
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Finally, the attention throughout this paper has been on settings with no aggregate risk. There is
no intrinsic barrier to relaxing this, but doing so would add one extra degree of complexity to the
problem. Policy preferences would not just differ between policymakers in different time periods,
but also within each period, between policymakers in different states of the world. Some way would
be needed to resolve this additional form of disagreement. One approach would be to impose a
Rawlsian ‘veil of ignorance’ when institutional design takes place, so that current and past realisa-
tions of the shock process are known only probabilistically. This would allow the value of policies
under different histories to be aggregated into a single, time-invariant objective. Mathematically this
is what we are already doing in our social insurance example, where stochastic individual utilities
are aggregated into a utilitarian social welfare function. This is left for future work.
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A. Proofs

A.1. Proof of Proposition 1

The spaces Ω (xt) and (A× X)∞ contain bounded sequences, and thus are l∞ metric spaces when
endowed with the sup norm. Quasi-concavity of h and p, quasi-convexity of h0, linearity of l, and
the linear presence of the promise values in (17) and (18) implies that the constraint set for the inner
problem is convex-valued and continuous in

{
xt, {ωs}∞

s=t
}

at all interior points of Ω (xt). The objec-
tive function r is continuous under Assumption 1 and quasi-concave under Assumption 5. The result
then follows by a direct application of Berge’s Theorem of the Maximum.

A.2. Proof of Proposition 2

Suppose that the statement were not true. Then for some τ≥1 there must exist a continuation alloca-
tion

{
x′′s+1, a′′s

}∞
s=t+τ

that satisfies the constraints of the inner problem from τ onwards and delivers a
higher value Wt+τ than the allocation

{
x′s+1, a′s

}∞
s=t+τ

. But if this is true then the combined allocation{{
x′s+1, a′s

}t+τ−1
s=t ,

{
x′′s+1, a′′s

}∞
s=t+τ

}
must in turn deliver a higher value for Wt than

{
x′s+1, a′s

}∞
s=t. By

the optimality of
{

x′s+1, a′s
}∞

s=t this cannot be possible unless the combined allocation violates one of
the constraints: (2), (3), or (17) and (18) in some period s ≥ t. The component

{
x′s+1, a′s

}t+τ−1
s=t must

satisfy these constraints from t to t + τ − 1, independently of the continuation outcome from t + τ

onwards, since it is a part of the feasible sequence
{

x′s+1, a′s
}∞

s=t, and for a given promise sequence
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the constraint set from t to t + τ − 1 is independent of outcomes from t + τ onwards. By assump-
tion the continuation

{
x′′s+1, a′′s

}∞
s=t+τ

satisfies all such constraints for t + τ onwards, so we have a
contradiction.

A.3. Proof of Proposition 3

The arguments are similar to the proof of Proposition 1. Quasi-concavity of h and quasi-convexity of
h0, together with the linear presence of the promise values in (17) and (18) implies that the constraint
set for the inner problem is continuous in {ωs}∞

s=t at all interior points of Ω (xt). Linearity of l implies
an equivalent continuity in xt. The objective function r is continuous under Assumption 1, so the
results again follow by a standard application of Berge’s Theorem of the Maximum.

A.4. LICQ and Proof of Proposition 4

LICQ

Fix xt and {ωs}∞
s=t. Let the allocation

{
x′s+1, a′s

}∞
s=t solve the associated inner problem. Fix a time

period s ≥ t, and stochastic draw σs, and suppose that in period s, q of the 2j constraints in (17) and
(18) are binding. Clearly q ≤ m, where the right-hand side of this inequality is the dimensionality
of A (σ). Denote by H the q×m matrix of derivatives of the binding constraint functions in (17) and
(18). That is, H takes the form:

H :=



∂h1
0

∂a1
s

∂h1
0

∂a2
s
· · · ∂h1

0
∂am

s
∂h2

0
∂a1

s

∂h2
0

∂a2
s
· · · ∂h2

0
∂am

s
...

...
. . .

...
∂h1

∂a1
s

∂h1

∂a2
s
· · · ∂h1

∂am
s

...
...

. . .
...


where the superscripts on the (vector-valued) h0 and h functions index only the subset of constraints
of types (17) and (18) that bind.

We say that LICQ is satisfied for xt and {ωs}∞
s=t when the matrix H is of full rank q for all s ≥ t.

Proof of Proposition 4

Strict concavity in the return function r and the convexity of the constraint set implied by Assump-
tions 3 and 5 implies that the solution to the inner problem is unique at all points {ωs}∞

s=t ∈ Ω̊ (xt).
Applying Berge’s Theory of the Maximum, this solution must be continuous in {ωs}∞

s=t.
53 Associ-

ated with this solution is a standard set of Kuhn-Tucker conditions. Within period s and for stochastic

53C.f. the proof of Proposition 3.
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draw σs, these conditions with respect to as will take the form:

∂r
∂as

+ λ′s (σs)
∂G (as, σs)

∂as
= 0 (66)

λ′s (σs) G (as, σs) = 0 (67)

λ′s (σs) ≥ 0 (68)

where G (as, σs) stacks the constraints in (17) and (18):

G (as, σs) :=

[
h (as, σs) + βEsωs+1 (σs+1)− h0 (as, xs, xs+1, σs)

h (as, σs) + βEsωs+1 (σs+1)−ωs (σs)

]

and λs =
[
(λm

s )
′ ,
(
λk

s
)′]′ is the stacked vector of multipliers on these constraints.54 The only barrier

to asserting an envelope condition is to guarantee the existence and uniqueness of these multipliers.
This is a straightforward matrix invertability problem, and is indeed ensured so long as LICQ holds:
see, for instance, Wachsmuth (2013). A standard limiting argument can then establish that the enve-
lope theorem applies in this case, and the derivatives of the value function with respect to ωs are as
given in the Proposition.

A.5. Proof of Proposition 5

For simplicity we drop explicit dependence on σs in this proof. Consider two promise sequences
{ω′s}

∞
s=t , {ω′′s }

∞
s=t ∈ Ω (xt) such that V

(
{ω′s}

∞
s=t , xt

)
= V

(
{ω′′s }

∞
s=t , xt

)
:= V̄. To establish quasi-

concavity we must show:
V
({

αω′s + (1− α)ω′′s
}∞

s=t , xt
)
≥ V̄ (69)

for all α ∈ (0, 1).
Let y′ :=

{
x′s+1, a′s

}∞
s=t and y′′ :=

{
x′′s+1, a′′s

}∞
s=t solve the inner problems associated with {ω′s}

∞
s=t

and {ω′′s }
∞
s=t respectively. It follows from the concavity of r (Assumption 5) that (69) must be sat-

isfied provided the convex combination αy′ + (1− α) y′′ is feasible when the promise sequence is
{αω′s + (1− α)ω′′s }

∞
s=t. In this case αy′ + (1− α) y′′ will deliver at least V̄, which is then a lower

bound on V
(
{αω′s + (1− α)ω′′s }

∞
s=t , xt

)
. In the event that r is strictly concave, (69) would be satis-

fied strictly, and the value function will be strictly quasi-concave.
The linearity of l and the concavity of p respectively imply that if (2) and (3) are satisfied in all time

periods by both y′ and y′′ then they must also be satisfied by αy′ + (1− α) y′′. These constraints are
unaffected by variations in the promise values. It remains only to show that constraints (17) and (18)
are also satisfied. Consider (17). We need:

h
(
αa′s + (1− α) a′′s

)
+ β [αωs+1 + (1− α)ωs+1] ≥

h0
(
αa′s + (1− α) a′′s , αx′s + (1− α) x′′s , αx′s+1 + (1− α) x′′s+1

)
54To ease on notation we assume in writing (66) that there are no constraints of the form (2) or (3). These would not change

the arguments: they would simply imply the addition of an extra set of terms independent of λ′s in (66).
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Since the constraint is satisfied by both y′ and y′′, we have:

αh
(
a′s
)
+ (1− α) h

(
a′′s
)
+ β [αωs+1 + (1− α)ωs+1] ≥

αh0
(
a′s, x′s, x′s+1

)
+ (1− α) h0

(
a′s, x′s, x′s+1

)
But by concavity of h:

h
(
αa′s + (1− α) a′′s

)
≥ αh

(
a′s
)
+ (1− α) h

(
a′′s
)

and by convexity of h0:

h0
(
αa′s + (1− α) a′′s , αx′s + (1− α) x′′s , αx′s+1 + (1− α) x′′s+1

)
≤

αh0
(
a′s, x′s, x′s+1

)
+ (1− α) h0

(
a′s, x′s, x′s+1

)
establishing the desired inequality. An identical argument confirms that (18) is are likewise satis-
fied for all s ≥ t. This establishes the feasibility of αy′ + (1− α) y′′ when the promise sequence is
{αω′s + (1− α)ω′′s }

∞
s=t, completing the proof.

A.6. Proof of Proposition 7

Suppose instead that the Ramsey plan were a time-consistent optimal choice of promises, and the
constraints associated with these promises were binding in some time period. Let ωτ be a promise
vector that constrains the inner problem, and denote by λm

s and λk
s the vectors of current-value

multipliers on constraints (17) and (18) respectively for generic period s.55 These multipliers are
strictly positive whenever the respective constraints bind. The marginal effect of increasing ωτ on
V
({

ωR
s
}∞

s=t , xt

)
is βτ−t (λm

τ−1 + λk
τ−1 − λk

τ

)
for τ > t, and −λk

τ for τ = t, as shown in Proposition
4. Suppose first that the only binding constraint is (17), in period τ − 1. Then the derivative of
V
({

ωR
s
}∞

s=t , xt

)
with respect to some elements of the promise vector must be strictly positive for all

t < τ, contradicting optimality in these periods.56 Suppose instead that constraint (18) binds in pe-
riod τ. Then the derivative of V

({
ωR

s
}∞

s=t , xt

)
with respect to some elements of the promise vector

must be strictly negative for t = τ, contradicting optimality in this period.

A.7. Proof of Proposition 8

A.7.1. Preliminaries

Let ω̄ > 0 be a uniform bound on {ωs}s (this exists by the Assumption in section 3.1.1), i.e. ‖ωs‖ < ω̄

for all s and all {ωs}s sequences in Ω, where ‖·‖ is the sup norm. Our analysis will focus on a transfor-
mation of the underlying promise sequence, given by ωβ := {βsωs}∞

s=0. If we let ω denote complete
promise sequences, clearly we can recover an ω associated with any given ωβ by multiplying through
β−s for all s. Denote this transformation β−1 (ωβ

)
. That is, ω = β−1 (ωβ

)
. The use of ωβ in place of

55We suppress dependence on the stochastic process σ to ease on notation.
56Note that increasing the promise vector expands the binding constraint set for the inner problem in this case, so is a

movement within Ω (xt).
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ω is for analytical purposes. In particular, ωβ lives in the space:

Sω̄ =
{

y ∈ (Rj+k ×Rς)∞ : ‖ys‖ ≤ βsω̄
}

Since βsω̄ → 0, this space is well-known to be compact. Compactness is an important property
in enabling fixed-point theorems to be applied.57 Recall that the set Ω (x0) denotes the promise
sequences for which the interior problem’s constraint set is non-empty. This is closed for any x0 . We
can denote by Ωβ (x0) the corresponding set of ωβ:

Ωβ (x0) :=
{

ωβ ∈ Sω̄ : β−1
(

ωβ
)
∈ Ω (x0)

}
Since Ω (x0) is closed, so too is Ωβ (x0). Hence Ωβ (x0) is a closed subset of the compact set Sω̄.
It follows that Ωβ (x0) is also compact. By assumption Ω (x0) is convex, and Ωβ (x0) inherits this
property.

A.7.2. Construction of a continuous mapping

The proof works by constructing a continuous mapping from Ωβ (x0) into itself, with the property
that if ωβ is a fixed point of this mapping, then the promise sequence ω = β−1 (ωβ

)
satisfies recur-

suive weak Pareto efficiency.

Step 1: De�ne a Pareto-dominating correspondence

Fix some ωβ ∈ Ωβ (x0), with corresponding ω = β−1 (ωβ
)
. Let t (ω) be the first time period in which

ω is strictly Pareto-dominated, i.e. the lowest value of t such that:

V
({

ω′s
}∞

s=τ
; x∗τ
)
−V

(
{ωs}∞

s=τ ; x∗τ
)
> ε > 0 (70)

for all τ ≥ t, some ε > 0 and some {ω′s}
∞
s=t. If ω satisfies recursive Pareto efficiency, let t (ω) ≡ ∞.

For all ω such that t (ω) < ∞, define the correspondence Γ̊ : Ωβ (x0) → Ωβ (x0) as equal to the
set of ω̃β such that ω̃ strictly Pareto-dominates ω in period t (ω), as in equation (70). Additionally,
in these cases let Γ : Ωβ (x0) → Ωβ (x0) be the correspondence whose graph is the closure of the
graph of Γ̊. Note that by the continuity of V and of {x∗s }

∞
s=0 in ω, all elements of Γ

(
ωβ
)

must Pareto-
dominate ω. That is, for all ω̃ such that the corresponding ω̃β is in Γ

(
ω̃β
)
, it follows from (70) that

we must have:
V
(
{ω̃s}∞

s=τ ; x∗τ
)
≥ V

(
{ωs}∞

s=τ ; x∗τ
)

(71)

for all τ ≥ t (ω). When t (ω) = ∞, we simply let Γ
(
ωβ
)
= ωβ.

The correspondence Γ : Ωβ (x0) → Ωβ (x0) constructed in this way satisfies the following proper-
ties:

1. Convexity (this follows from the quasi-concavity of V)

57If ς is countably infinite a similar ‘discounting’ transformation can be applied to the components of each ωs to ensure
compactness.

48



2. Upper hemi-continuity (follows from fact Γ has a closed graph)

3. ωβ ∈ Γ
(
ωβ
)

for all ωβ ∈ Ωβ (x0) (this follows from strict quasi-concavity of V – take a con-
vex combination between any point in Γ

(
ωβ
)

and ωβ: all agents must strictly prefer all such
combinations to ωβ)

Property 3. here implies Γ
(
ωβ
)

cannot be used directly as the basis for a fixed-point argument, since
ωβ ∈ Γ

(
ωβ
)

whether or not ωβ satisfies RPE. The idea is instead to construct a correspondence that
lives in Γ

(
ωβ
)

for all ωβ, but contains ωβ only when RPE is satisfied.

Step 2: De�ne a max correspondence within Γ

Let the correspondence Ψ̊ : Ωβ (x0)→ Ωβ (x0) be defined as follows:

Ψ̊
(

ωβ
)

:= arg max
ω̃β∈Γ(ωβ)

∥∥∥ω̃β −ωβ
∥∥∥

where ‖·‖ here is the l2 norm.58 For a given ωβ this norm defines a continuous function on the
compact set Γ

(
ωβ
)
, so existence of the maximum is assured by Wierstrass’s theorem. As with Γ̊ and

Γ, let Ψ : Ωβ (x0) → Ωβ (x0) be the correspondence whose graph is the closure of the graph of Ψ̊.
Since Graph

(
Ψ̊
)
⊂ Graph (Γ) and Graph (Γ) is closed, it follows that the closure points of Graph

(
Ψ̊
)

must also be contained within Graph (Γ). Hence for all ω̃β ∈ Ψ
(
ωβ
)
, condition (71) must hold.

Finally, denote by Ψc : Ωβ (x0)→ Ωβ (x0) the correspondence that maps the convex hull of Ψ
(
ωβ
)

for all ωβ ∈ Ω (x0). That is, ω̃β ∈ Ψc (ωβ
)

if and only if there is an α ∈ [0, 1] such that ω̃β =

αω
β
1 + (1− α)ω

β
2 for some ω

β
1 and ω

β
2 in Ψ

(
ωβ
)
.

We will argue that a fixed point of Ψc must satisfy recursive Pareto efficiency. Ψc satisfies the
following properties:

1. Convexity (by construction)

2. Upper hemi-continuity (closed graph)

A.7.3. Application of Kakutani's �xed-point theorem to Ψc

Ψc is an upper-hemicontinuous correspondence mapping the convex, compact space Ω (x0) into it-
self. It is non-empty for all ωβ ∈ Ω (x0) (this follows from the fact Γ

(
ωβ
)

is non-empty by construc-
tion) and convex for all ωβ ∈ Ω (x0). Hence, by Kakutani’s theorem, Ψc has a fixed point.

A.7.4. Proof that this �xed point must satisfy recursive Pareto e�ciency

Consider a fixed point of Ψc. We need to show that this point, ωβ, must satisfy recursive Pareto
efficiency. Suppose otherwise. Then there must exist a point ω̃β bounded away from ωβ such that
(70) holds for all τ sufficiently large. Since

∥∥ω̃β −ωβ
∥∥ > δ > 0, it follows that ωβ /∈ Ψ̊

(
ωβ
)
. It follows

58Square summability follows from the fact ωs is bounded and of finite dimension for all s and β < 1. The proof extends
directly to cases in which ωs is infinite-dimension but square-summable.
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that either ωβ must live in the boundary of Ψ̊
(
ωβ
)

(i.e., in Ψ
(
ωβ
)
), or ωβ is a convex combination of

elements of Ψ
(
ωβ
)
. Suppose first that ωβ ∈ Ψ

(
ωβ
)
. It follows that there exist ω

β
1 and ω

β
2 both within

an ε ball of ωβ (for any ε > 0) such that ω
β
2 ∈ Ψ̊

(
ω

β
1

)
. But by the continuity of V and of {x∗s }

∞
s=0 in ω,

we must also have that for ω
β
1 sufficiently close to ωβ, ω̃β ∈ Γ̊

(
ω

β
1

)
. From the definition of Ψ̊

(
ωβ
)

it
follows that: ∥∥∥ω̃β −ω

β
1

∥∥∥ ≤ ∥∥∥ω
β
2 −ω

β
1

∥∥∥
As ω

β
1 and ω

β
2 become arbitrarily close to ωβ the right-hand side of this expression approaches zero,

whereas the left-hand side is bounded above zero. This is a contradiction.
The only remaining possibility is that ωβ is a convex combination of two different elements ω

β
a

and ω
β
b that are in Ψ

(
ωβ
)

– i.e. ωβ ∈ Ψc (ωβ
)

but ωβ /∈ Ψ
(
ωβ
)
. As shown in Step 2 above, for all

ω̃β ∈ Ψ
(
ωβ
)

condition (71) applies. Hence there exists a sufficiently large t such that both:

V
(
{ωa,s}∞

s=τ ; x∗τ
)
≥ V

(
{ωs}∞

s=τ ; x∗τ
)

and
V
(
{ωb,s}∞

s=τ ; x∗τ
)
≥ V

(
{ωs}∞

s=τ ; x∗τ
)

hold. By the strict quasi-concavity of V in ω, it then follows that either {ωa,s}∞
s=τ = {ωb,s}∞

s=τ =

{ωs}∞
s=τ for all τ ≥ t or:

V
(
{ωs}∞

s=t ; x∗t
)
> V

(
{ωs}∞

s=t ; x∗t
)

The latter is clearly a contradiction. It remains to rule out the former – i.e., that the elements of ω
β
a ,

ω
β
b and ωβ coincide for t sufficiently large. Suppose this were true. By a maintained assumption

(to be contradicted) ωβ is Pareto-dominated by some ω̃β after a sufficient amount of time. This
implies neither ω

β
a nor ω

β
b can be in Ψ̊

(
ωβ
)
. To see why, consider the composite sequence given by{{

ω
β
a,s

}t−1

s=0
,
{

ω̃
β
s

}∞

s=t

}
. By construction this must also Pareto-dominate ωβ after a sufficient amount

of time. Under the l2 norm it is also further away from ωβ than ω
β
a , since strict Pareto-dominance

requires that there should always exist an s > t such that
∥∥∥ω̃

β
s −ω

β
s

∥∥∥ > 0 for all t ≥ 0. Hence, by the

definiton of Ψ̊, ω
β
a /∈ Ψ̊

(
ωβ
)
.

It follows that ω
β
a and ω

β
b are in the boundary of Ψ

(
ωβ
)
. Thus for any ε > 0 there exist ω

β
ε and

ω
β
aε within an ε ball of ωβ and ω

β
a respectively such that ω

β
aε ∈ Ψ̊

(
ω

β
ε

)
. But by continuity of V and

{x∗s }
∞
s=0 in ω, we must have ω̃β ∈ Γ

(
ω

β
ε

)
for sufficiently small ε. This implies the composite series{{

ω
β
aε,s

}t−1

s=0
,
{

ω̃
β
s

}∞

s=t

}
must also be in Γ

(
ω

β
ε

)
. But as ε → 0 the distance between this composite

and ω
β
ε (in the l2 norm) must likewise exceed

∥∥∥ω
β
aε −ω

β
ε

∥∥∥. This contradicts ω
β
aε ∈ Ψ̊

(
ω

β
ε

)
.

Hence ωβ ∈ Ψc (ωβ
)

is inconsistent with the existence of a point ω̃β that strictly Pareto dominates
ωβ after a sufficient amount of time. It follows that any fixed point of Ψc is an ωβ sequence whose
counterpart ω satisfies recursive Pareto efficiency.

50



A.8. Proof of Proposition 9

A necessary condition for weak Pareto efficiency is that there should not exist a bounded sequence
of marginal changes to the promise vectors:{{

dωs (σs)

dθ

}
σs∈Σ

}∞

s=t

such that the value of the object ∆s, defined as:59

∆s :=
∞

∑
τ=s

βτ−s ∑
στ∈Σ

P (στ)

[
β
[
λm

τ (στ) + λk
τ (στ)

]
∑

στ+1∈Σ
P (στ+1|στ)

dωτ+1 (στ+1)

dθ
− λk

τ (στ)
dωτ (στ)

dθ

]

is either bounded above zero for all s ≥ τ or bounded below zero for all s ≥ τ, for some τ ≥ 0.
Consider the sequence that sets dωs(σ′)

dθ = 1 for some σ′ ∈ Σ and all s ≥ τ, with dωs(σ)
dθ = 0 for σ 6= σ′

and all s. The value of ∆s associated with this marginal change to the promise vector can be denoted
∆s (σ′):

∆s
(
σ′
)
= P

(
σ′
) ∞

∑
t=s

βt−s

[
∑

σ∈Σ

P (σ′|σ) P (σ)

P (σ′)
β
[
λm

t (σ) + λk
t (σ)

]
− λk

t
(
σ′
)]

If the first inequality stated in the proposition holds, we will have ∆s ≥ 1
1−β ε > 0 for all s ≥ τ. If the

second inequality holds, we will have ∆s ≤ − 1
1−β ε. In each case, a strict Pareto improvement is thus

possible for all s ≥ τ, and RPE cannot be satisfied.

A.8.1. Proof of Corollary to Proposition 9, Part 2

By usual logic, if the promise-value functions are quasi-concave in promises, then the absence of a
local (differential) change to the promise sequence {ωs}∞

s=t that is strictly preferred by all policymak-
ers from t onwards implies the absence of a global strict Pareto improvement. Hence in this case it is
sufficient to show that if (25) holds, there cannot exist a bounded sequence of marginal changes to
the promise vectors: {{

dωs (σs)

dθ

}
σs∈Σ

}∞

s=t

such that the associated ∆s ≥ ε > 0 for all s ≥ t. Suppose otherwise. It follows from convergence of
the multipliers and the boundedness of the marginal changes that for all s above some finite threshold
and some σ′ ∈ Σ we must have:

∞

∑
τ=s

βτ−s

[
β

dωτ+1 (σ
′)

dθ ∑
στ∈Σ

P (σ′|σ) P (σ)

P (σ′)

[
λm

ss (σ) + λk
ss (σ)

]
− dωτ (σ′)

dθ
λk

ss
(
σ′
)]

> δ

59P (στ+1|στ) here is the transition probability between στ and στ+1.
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for some δ > 0. We know from (25) that:

β ∑
σ∈Σ

P (σ′|σ) P (σ)

P (σ′)

[
λm

ss (σ) + λk
ss (σ)

]
− λk

ss
(
σ′
)
= 0

and the inequality in turn implies λk
ss (σ

′) > 0. Dividing through the inequality by λk
ss (σ

′) and
rearranging gives:

∞

∑
τ=s

βτ−s dωτ+1 (σ
′)

dθ
>

∞

∑
τ=s

βτ−s dωτ (σ′)

dθ
+

δ

λk
ss (σ

′)

for all s sufficiently large. Now, define Γs := ∑∞
τ=s βτ−s dωτ+1(σ

′)
dθ . Boundedness of the sequence{

dωs(σ′)
dθ

}∞

s=t
implies the sequence {Γs}∞

s=t likewise has a finite upper bound, say Γ̄. This is incon-
sistent with the previous inequality: we have a contradiction.
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