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Abstract

We use a new dataset of around a quarter of a million survey points that allows

us both to derive estimates of residential land on a per capita basis for 27 EU

countries, and to model its supply. There is a fairly strong negative correlation

between residential land per capita and population density, despite the fact that

residential shares are typically very low. In the national data there is also a striking

lack of correlation between residential land and per capita consumption, but with no

indication that this reflects any true economic scarcity value. We model the spatial

distribution of residential land allowing both for spatial correlation and the impact

on land supply of a consumption externality from nearby housing. We assume that

planning policy restricts land supply to match its price to perceived marginal social

cost. Our econometric results provide qualitative support for the model; but it is

very hard to match our results to plausible structural parameters unless we assume

a social planner who both gives a far greater weight to the impact of the externality

than to the welfare gains from new housing, and perceives population density to be

far larger then it actually is.
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1 Introduction

Research into the housing market suffers from a paucity of data that allow direct inter-

country comparisons of either quantity or absolute prices.1 In this paper we focus on a

key input to housing, residential land, that can be measured directly, thus allowing inter-

country comparisons. We use a dataset taken from the European Land Use and Cover

Area-Frame Statistical Survey (LUCAS) (Eurostat, 2012) that allow us both to derive

national and regional estimates of residential land on a per capita basis, and model its

spatial distribution and economic determinants, on a consistent basis in 27 EU countries.

LUCAS provides us with a dataset of around one quarter of a million points from a

stratified grid covering most of the inhabited geographical area of the 27 EU countries in

the survey (which was carried out in 2012). The motivation for LUCAS was primarily

to survey land use in agriculture and forestry; but as a by-product it tells us whether

any given point in the survey was used for residential purposes, as well as providing

some classification of its physical properties. This dataset allows us to carry out two

complementary exercises: in measurement and modelling.

1.1 Measuring residential land in 27 EU countries

In Section 2 we use the percentage of points classified as residential to derive area estimates

of total residential land and some of its subcomponents at both national and regional

(Nomenclature of Units for Territorial Statistics level 2 or NUTS2) levels. At a national

level these estimates have relatively tight confidence intervals (even after we account for

non-trivial degrees of spatial correlation). However precision falls at a regional level, and

in smaller or more sparsely populated countries.

We focus on five key summary facts derived from the resulting estimates:

1. Shares of residential land in total land are typically very low. The median share at

a national level is 2.4%, and at a (probably more representative) regional level it

is 3.2%.2 In only one country (Malta), and in fewer than 5% of the regions is the

residential share above 20%. Shares of land that are actually built on are typically

considerably smaller.

2. Residential land on a per capita basis has a very wide range of cross-sectional varia-

tion, both at the national and regional level. At a national level its cross sectional log

standard deviation is similar to that of consumption per capita; while intra-country

regional variations are typically even larger. Yet the correlation of residential land

1Datasets such as those of Federal Reserve Bank of Dallas (2015) “International House Price
Database”, the Bank for International Settlements (2015) “Residential property statistics”, the Interna-
tional Monetary Fund (2015) “Global House Price Index” or the OECD (2015) “Focus on house prices”
provide valuable information on price changes, but do not enable direct comparisons of quantities or
absolute prices

2NUTS2 Regions: these are mostly more homogeneous in population terms than countries.
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per capita with national consumption per capita is close to zero. Since land is a cru-

cial input to housing consumption, and is fairly evidently an imperfect substitute

for other inputs, this lack of correlation is quite striking.

3. Combining our land estimates with national accounts data, estimates of housing

expenditure per square metre of residential land display massive variation between

EU countries. For example, the average UK household has housing expenditure of

around 22 Euros per square metre of residential land, roughly 10 times as much

per square metre as an Hungarian or Polish households (for comparison, UK total

consumption per capita is only around 3 times higher).3

4. We also combine LUCAS-based estimates of land used for non-residential purposes

(predominantly agriculture and forestry) with estimates of value added for these

sectors. This allows us to compare value added per square metre of land between

housing and non-housing. While there is a modest positive cross-sectional correla-

tion between the two, the opportunity cost of land is extremely low in comparison to

its value added in housing. Thus it is very hard to explain the lack of correlation of

residential land with consumption, noted in Fact 2, in terms of compeling economic

demands.

5. Regional variations in residential land per capita within most countries are very

large, and in some countries distinctly larger than variation between countries. This

variation, is not only a results of the large discrepencies between highly urban regions

(such as congested cities) and sparsely populated rural regions.

1.2 Modelling the spatial distribution of residential land: an

implicit model of land supply

In the remainder of the paper we extend our analysis to the full dataset, by modelling the

distribution of residential land at each of the roughly quarter million individual points

in the survey. Our model incorporates both spatial correlation (captured by the share of

neighbouring points that are classified as residential) and an implicit model of land supply,

that is at least qualitatively consistent with a Pigovian equilibrium, that determines land

supply (a framework similar in spirit to Cheshire and Sheppard (2002), but incorporating

the impact of spatial correlation), which in turn determines the unconditional probability

that any given point in a given country or region is residential.

In this framework, other people’s consumption of the housing services provided by

residential land imposes a consumption externality on those living nearby. This is ac-

centuated by spatial correlation, which for a given share of residential land in total land,

increases the conditional probability that housing will be consumed near other housing.

3We focus on comparisons where land estimates are reasonably precisely measured. The point estimate
for Luxembourg is nearly 50 Euros per square metre, but the land estimates used in that calculation have
a very wide margin of error.
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We assume that planning policy deliberately restricts land supply to match its price to

its perceived marginal social cost, in an attempt to mimic a Pigovian equilibrium.

In the absence of the externality, and with the opportunity cost of land in other uses

assumed to be low and constant (consistent with Fact 4), the model would predict that

consumption per capita and residential land per capita would rise at least proportionately.

However, with Pigovian controls over land supply the impact of higher consumption will

be much more limited. Residential land supply will be higher (and hence prices lower)

where total land per capita is higher (since this lowers the unconditional probability of

the consumption externality). Thus there will be a negative relationship between housing

supply and population density (matching, at least qualitatively, the story told by Miles

(2012)), but which would not arise in the absence of the externality. We estimate the

model both in implicit form (as a determinant of the unconditional probability that a

given point in any region will be residential, taking account of the impact of spatial

correlation on the conditional probability) and directly using regional data. Results are

very similar. Population density has a strong negative impact on land supply. We find that

at a regional level consumption per capita does (as our theory would predict) also have a

modest positive impact on supply of land, and hence on regional residential probabilities.

However, this is largely obscured in data at a national level, due to large regional variations

in population density.

While our econometric results provide qualitative support for our theoretical model,

we show in Section 5 that it is very hard to match our reduced form results to plausible

structural parameters unless we assume a social planner who gives a far greater weight to

the impact of the externality than to the welfare gains from new housing.

1.3 Structure of the paper

In Section 2 we describe our dataset and summarise its key features, which provides the

basis for our Facts 1 to 5 as outlined above. Section 3 sets out our model of Pigovian land

supply. Section 4 presents our estimation results. In section 5 we discuss the estimation

of the reduced form parameters in relation to the structural parameters of the model.

Finally Section 6 we draw conclusions from our analysis.

2 The dataset

2.1 The LUCAS Methodology

Eurostat’s “Land Use and Cover Area frame Statistical Survery” (LUCAS) is a two phase

sample survey. The first phase is an equally spaced systematic grid of 1,078,764 obser-

vations (in the 2012 sample) in 27 EU countries, separated by 2 km in the four cardinal

directions. Each of the points in the first-stage sample are photo-interpreted and classified

4



in terms of land cover,4 as well as eligibility (based on accessibility) for the second stage

of the survey.5 Together these two classifications give the stratifications of the first stage

sample. For the second a subset of 270,277 eligible points from the first-stage sample were

visited in person by a surveyer. It is the dataset derived from this physical survey that

we use in this paper.

Figure 1: The LUCAS dataset
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For robustness we proceed with two different definitions of residential land, using land

use and cover definitions from the LUCAS survey (Eurostat, 2013). The first, “broad”

residential land, uses all survey points classified as residential by land use (LU “U370” in

the dataset). The alternative “narrow” measure uses only the subset of residential points

that are also classified by land cover as artificial structures (land cover A11 “Buildings

with one to three floors” and A12 “Buildings with more than three floors”).

We augment the LUCAS dataset by using Eurostat data on population and gross value

added at a regional level (from NACE) as well as Consumption, Actual Rent, Implied Rent

and Maintenance at a national level from national accounts (NAMA).

2.2 Estimates of Residential Land and its Components

The key features of the estimates we derive from the LUCAS dataset are summarised in

Table 1.

4Using the “CORINE” classification. 1: Arable, 2: Permanent Crop, 3: Grassland, 4: Woodland and
shrubland, 5: Bareland, 6: Artificial, 7: Water and Wetland

5Only points that were both below 1,500m in altitude and accessible by road were included in the
second stage.
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Table 1: Summary table of the dataset

Residential
Total
Land

Accessible
Land

Broad
Land

Narrow
Land

Housing
share

Value
added

(m2 per
capita)

(m2 per
capita)

(m2 per
capita)

(m2 per
capita)

(%) (EUR
m2 )

AT 9, 976 5, 623 256 110 14.9 11.2
BE 2, 752 2, 295 323 137 18.1 9.2
BG 15, 135 10, 399 223 85 16.0 2.6
CY 10, 732 6, 691 241 181 15.0 9.7
CZ 7, 507 6, 152 178 75 18.2 7.6
DE 4, 364 3, 187 187 86 17.6 16.2
DK 7, 687 5, 569 390 138 20.6 10.7
EE 34, 128 24, 166 600 195 12.7 1.3
EL 11, 863 7, 959 155 96 18.8 14.7
ES 10, 808 7, 291 130 88 18.8 17.8
FI 62, 658 48, 492 713 97 22.5 5.7
FR 9, 692 6, 797 380 125 20.3 8.9
HU 9, 366 6, 519 295 131 12.9 2.3
IE 15, 231 11, 810 426 178 18.8 7.0
IT 5, 073 3, 807 192 114 17.4 14.5
LT 21, 740 15, 103 304 182 8.9 1.9
LU 4, 927 2, 959 119 80 18.5 47.3
LV 31, 574 20, 105 453 128 14.3 1.8
MT 757 757 153 134 8.1 5.8
NL 2, 483 1, 714 162 75 17.5 17.5
PL 8, 113 6, 628 252 74 10.9 2.5
PT 8, 747 5, 898 177 138 13.7 8.1
RO 11, 863 8, 067 168 99 16.8 4.0
SE 46, 249 29, 189 473 119 20.5 7.7
SI 9, 863 8, 068 225 87 12.0 5.4
SK 9, 073 6, 905 184 83 12.4 4.7
UK 3, 914 3, 002 182 83 21.1 20.4
Average 13, 936 9, 820 279 115 16.2 9.9
Median 9, 692 6, 691 225 110 17.4 7.7
CoV 1.02 1.04 0.53 0.31 0.23 0.94
Max 62, 658 48, 492 713 195 22.5 47.3
Min 757 757 119 74 8.1 1.3

CoV: Coefficient of Variation. Housing share is total housing expenditures divded by
consumption. The value added is housing expenditures divided by the broad measure of
residential land in m2.
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2.2.1 Estimated shares of residential land in total land

As documented in our Fact 1 and Table 1, Figure 2 show that for the great majority of

EU countries residential land represents only a small proportion of the total land area.

Only Malta and Belgium have residential shares in double figures.

Figure 2: Shares of residential land in total land in 27 EU countries
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We can also do the same calculation for the 261 EU (NUTS2) regions covered by the

survey. While individual regional point estimates are subject to nontrivial measurement

error (discussed further in the next section) we can nonetheless derive some key features

of the regional distribution. Figure 3 plots the empirical cumulative density function of

residential shares at a regional level. This provides further substantiation of our Fact 1:

in the great majority of regions of the EU residential shares are low, whether using our

broad or narrow definition of residential land. The median regional residential shares are

3.2% on our broad definition, and less than 1% on the narrow definition. Only 10% of EU

regions have broad residential shares in double figures; and only 4% of regions (all major

urban areas) have shares above 20%.

Figure 3: Residential Shares by EU Region: Empirical CDFs
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2.2.2 Estimates of residential land per capita

To document our Fact 2 we can also express our land estimates in per capita terms, which

again show very large differences both at a national and regional level. Figure 4 shows

estimates of per capital residential land on both definitions at a national level, together

with estimated 95% confidence intervals.6 For most countries the range of sampling

uncertainty in at least the broad measure of residential land is small in comparison with

the large differences between countries. Table 1 shows that the coefficient of variation

of broad residential land per capita across countries is around 50%: comparable to the

degree of varation in consumption per capita within the 27 countries.

Figure 4: Estimates of residential land per capita in 27 EU countries, with 95% confidence
intervals
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Since measurement error is decreasing in the number of points in any given area,

which in turn is roughly proportional to its geographical size, precision of estimates of

residential land falls off both for smaller countries and, a fortiori, for any given EU region.

Nonetheless we can again derive some key features of the regional distribution, since these

do not depend on the precision with which any given point is estimated. Figure 5 shows

that the degree of variation in (broad) residential land per capita across EU regions, both

within the EU as a whole, and within some individual countries, is very much greater

than the variation between countries; but the chart also demonstrates the large differences

between some countries even for the entire distribution across regions within that country.

Some features of these distributions are unsurprising. We would expect to see relatively

low levels of residential land per capita in large cities, where many households live in

apartment blocks that by their nature require little land per capita. And indeed the lowest

levels of residential land per capita are typically found in cities in most EU countries.

However, while this explanation is descriptively valid, in most cases it does not reflect

any actual physical constraint, since, as shown in Figure 5, in only a handful of EU regions

6These are calculated using the binomial formula used in Gallego & Delince, 2010, equation 12.2.
Given the evidence of spatial correlation that we present below, this typically understates measurement
error. In a later draft we plan to provide confidence intervals that are robust to spatial correlation;
however our preliminary investigations suggest that the degree of understatement of measurement error
by the binomial formula is quite limited for most countries.
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Figure 5: Residential Land Per Capita by Region: Empirical CDFs
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are residential shares of total land sufficiently high that there is simply “no space” for

more residential land. In the great majority of EU regions the amount of residential land

per capita thus reflects a policy choice, not a physical constraint.

Figure 5 also shows some very striking differences between countries. Thus two rel-

atively sparsely populated countries, France and Spain, which Table 1 shows have very

similar amounts of total land per capita, (the reciprocal of population density) have

extremely different regional distributions of land per capita. France has a regional dis-

tribution that almost spans the entire EU regional distribution; whereas the range of

values across the regions of Spain is very much smaller, with clear-cut dominance by the

French distribution. In contrast, the distributions for Germany and the UK (both with

similar and distinctly higher rates of population density at a national level) cross, with a

considerably larger range of variation in the UK, but around a very similar average value.

Figure 6: Composition of building stock
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To investigate this difference further, figure 6 plots the composition of the residential

building stocks across the European Union using a Eurostat dataset (see Appendix A. As
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can be seen there is a massive variation in the type of dwelling people live in, with, at one

extreme, Ireland with 95.2% of the inhabitants living in single residence houses, whereas,

for example, Spain has 65% of its residents living in apartment blocks. While the nature

of residential buildings provides some insights into the differences in the distribution of

residential land shown in Figure 6, it is, however, not of itself an explanation, since clearly

the way in which residential land is utilised is also both endogenous to the price of land

and to the restrictions on land supply and land use that planning policy imposes.

2.2.3 Composition of residential land

Figure 7 uses the land cover classification provided by LUCAS to show the breakdown of

residential land into its main components.

Figure 7: Main components of residential land per capita in 27 EU countries
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There are large differences in composition. At one extreme, in Malta amost all res-

idential land consists of buildings; in contrast, in a number of Scandinavian and Baltic

countries, a large proportion of residential land is made up of grass and woodland in

gardens.

There is no clear-cut case for choosing between the broad measure of residential land,

which includes green space, and the narrow definition, which only focuses on buildings. In

practice both are clearly subject to regulation (most gardens would, potentially, have space

for at least one, often two or more additional houses, but in most countries regulation

would not actually permit this additional building). We thus proceed in parallel with

both measures, noting, however, that the relatively low number of observations of the

narrow measure means that, as shown in Figure 4, confidence intervals around any point

estimates are distinctly wider, thus giving us more confidence in inferences that can be

drawn from the broad measure.
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2.2.4 Correlations

Figures 8 and 9 show the natureof the bivariate relationships between our two measures of

residential land per capita and total land per capita (the reciprocal of population density).

Figure 8: Residential vs. Total land: National Data
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â: 2.43 (0.67), b̂: 0.34 (0.07), R2: 0.44 â: 3.99 (0.55), b̂: 0.08 (0.06), R2: 0.06

Figure 9: Residential vs. Total land: Regional Data
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â: 2.71 (0.21), b̂: 0.31 (0.02), R2: 0.38 â: 2.31 (0.24), b̂: 0.21 (0.03), R2: 0.20

On the face of it, a positive association might seem unsurprising: more sparsely popu-

lated countries might be viewed as having “ more space” for houses and gardens. However,

a glance at Figure 2 should give pause for thought. For the overwhelming majority of

countries residential shares are so small that this argument is distinctly less plausible. We

therefore conclude that we need to look for other explanations in our modelling.

We now turn to the (lack of) relationship with consumption per capita, as in our Fact

2.

Figure 10 show a distinct lack of any apparent clear-cut bivariate relationship between

residential land and consumption per capita across the cross section of 27 countries (our

fact 2). This lack of relationship is itself very striking. As a key input to housing services,

and indeed as a consumption good (“space”) in its own right, it appears unlikely on a
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Figure 10: Residential land per capita vs. consumption per capita
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â: 5.54 (1.53), b̂: −0.00 (0.16), R2: 0.00 â: 4.72 (0.97), b̂: −0.00 (0.10), R2: 0.00

priori grounds that consumption of the services of residential land is a borderline inferior

good. Our model of Pigovian land supply set out below provides a rationale for such

a weak correlation; our empirical results also show that the lack of a simple correlation

across the cross-section of countries in our sample conceals some (albeit fairly weak)

impact of national consumption at a regional level, once we factor in the impact of other

determinants.

2.3 Estimates of housing expenditure per square metre and the

opportunity cost of housing

We can also combine our land estimates derived from LUCAS with data from the national

accounts (see Appendix A) to derive estimates of housing expenditure, in Euros, per

square metre of (broad) residential land, for each of the 27 countries in our sample. Table

1 shows the resulting figures, which, as noted in our Fact 3, show an extremely wide range

of variation. As Figure 11 illustrates, in contrast to the lack of correlation of residential

land with consumption, the single strongest explanatory factor for variation in housing

expenditure is cross-sectional variation in total consumption per capita.

One possible supply-side-based explanation for the variation in housing expenditure

(or, equivalently, value-added from the housing sector) per square metre of residential

land might in principle be if there are also significant cross-sectional differences in the

opportunity of land in other potential uses. Figure 12 shows that, in the majority of EU

countries, agriculture (and to a lesser extent forestry) is the dominant alternative use.

We therefore construct two measures of opportunity cost by dividing the valued added

in forestry or agriculture (both measures from the national accounts, Appendix A), by

the respective areas used for these purposes. In figure 13 we plot the scatter plots of

these measures of the opportunity cost of land against our measure of valued adding from

housing services, both measured on a comparable basis, per square metre of land.

Figure 13 shows that there is indeed a positive correlation between our measure of value
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Figure 11: Housing Expenditure per m2 vs Consumption per Capita in 27 EU Countries
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Figure 12: Composition of Total Land
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added from broad housing services and the opportunity cost of land used in agriculture

(with a coefficient of 0.71 on the log values). However a closer look at the chart shows that

this correlation cannot be viewed as representing any true economic relationship, since,

as noted in Fact 4, the value added in the two sectors differ dramatically in magnitude.

Where housing services has a value added per square metre of land between 1 and 50 euros,

all our measures of value added from agricultural are below 1 euro. We speculate that

the correlation might be driven by the historical importance of agricultural productivity

of the land.

The correlation with the opportunity cost measure for forestry is not statistically

significant and the differences in scales are even bigger.

Thus we conclude that there is no plausible explanation for the observed variation in

housing expenditure per square metre in terms of the opportunity cost in competing uses

of land.
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Figure 13: Housing Expenditure per m2and the Opportunity Cost of Land
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3 A simple model of Pigovian land supply

3.1 Distribution of Households

A set H of households, h = 1, . . . , H live on a circle of points, i = 1, . . . , L ∈ L. Nature

allocates households to an “address” (a point on the circle) via a random mapping from

h to i (h) ∈ I ⊂ L.

We assume that the households are distributed clockwise around the circle by a Markov

chain, with the transition matrix given by:

M =

[
Φ 1− Φ

1− γ γ

]
(3.1)

with the state vector

xi ≡

[
1(i∈I)

1(i/∈I)

]
(3.2)

where the first element of xi is equal to 1 if the point i is a household address and zero

otherwise. This implies that the (notional) law of motion for the states around the circle

(which in turn determines the distribution of addresses) is given by:

xi+1 = Mxi + ui+1. (3.3)

Let l = L/H, be per capita land, hence population density, D = l−1. To ensure the

correct steady state distribution we must have:

Φ = D + (1−D) s (3.4)

γ = 1−D (1− s) (3.5)
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where s ∈ (0, 1) is a parameter determining spatial correlation, with s = 0 implying no

spatial correlation. To simplify the algebra we assume that Nature repeats the allocation,

until it reaches a finite sample with allocations that match the steady-state distribution.

3.2 Housing Technology

We assume a very simple housing technology that is intended to capture intensity of land

use, which in turn determines the nature of the consumption externality. The housing

technology at any address is given by the following recursion:

Ri(h)+1 =


Rh+1

i(h+1)−i(h)
∀i(h+ 1)− i(h) ≤ Rh+1

0 ∀i(h+ 1)− i(h)>Rh+1

(3.6)

the technology imposes the restriction that households can only build houses to the left of

their address, but also that the distance between two neighbouring addresses determines

the nature of this housing. Thus, for example, if two addresses happen to be on adjacent

points (i (h+ 1) = i (h)+1), then household h+1 is constrained to live in a house R points

high by 1 point wide (a “high rise”). In contrast if the two households have addresses R

or more points apart, household h + 1 lives in a house 1 point high by Rh points wide

(a “bungalow”). Intermediate values of the distance between the two addresses imply

that household h + 1 occupies a progressively taller building, and hence that there is

progressively more intense use of housing in the neighbouring point. This in turn, as

we show in the next section, determines the nature of the externality imposed on the

neighbouring household.

3.3 Private Utility and Equilibrium

Each household is identical except in respect of the externality imposed by its neighbour.

Household utility of household h (living at address i(h)) is given by

max
Gh,Rh

Uh = (1− α) ln (Gh −G∗) + α lnRh + ln(E −Ri(h)+1), (3.7)

where Gh is nonresidential consumption, for which there may be a minimum subsistence

level, G∗ > 0. If so, Rh will be a superior good, with loglinearised income elasticity
Ch

Ch−G∗ > 1, where Ch is total consumption. We assume for simplicity that household

h is indifferent between bungalows and high rises in terms of their own consumption:

congestion of housing only matters to the extent that it may imply a greater intensity of

housing in the adjacent point.7

The specification implies convex utility costs of housing in the neighbouring point,

7Allowing for this additional effect would complicate the algebra without changing the nature of
the social planner’s problem, as set out below, since it would simply accentuate the magnitude of the
externality.
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which can be rationalised in terms of claims on finite resources in the local “environment”

(E). The stock of finite resources, E is treated as an endowment. We show below that

the magnitude of E alone allows a sufficient parameterisation of the problem in terms of

utility costs.

Given the additive separable nature of the problem the externality has no direct impact

on any household’s choices (it will, as we shall show, have an indirect effect via the price

of housing). The budget constraint faced by household h is given by:

Gh +QRh = Ch, (3.8)

where Ch is total consumption of other goods and housing services and Q is the price of

housing services.

Optimising Equation 3.7 with respect to the constraint given in Equation 3.8 implies

the following private demand function:

Rh = α
Ĉh
Q
, (3.9)

where Ĉh = Ch −G∗ is the surplus consumption.

Substituting back into the utility function and combine with the optimality conditions,

gives the indirect utility for household h:

Vh = V
(
Ĉh, Q,Ri(h)+1

)
= ln Ĉh − α lnQ+ ln

(
E −Ri(h)+1

)
+ C (3.10)

where C = ln ((1− α)1−ααα) is the constant term. Hence we can straightforwardly calcu-

late the consumption equivalent loss of utility (as a share of total consumption) for those

with housing in neighbouring points using

V
(

(1− κ) Ĉh, Q, 0
)

= V
(
Ĉh, Q,Ri(h)+1

)
, (3.11)

which if we combine the indirect utility expressions yields:

κ(Ri(h)+1) = 1−
E −Ri(h)+1

E
(3.12)

If we investigate the limits of this expression, we have:

lim
E→Ri(h)+1

κ(Ri(h)+1) = 1 and lim
E→∞

κ(Ri(h)+1) = 0,

the consumption equivalent impact of the externality is monotonically increasing in Ri(h)+1

(the intensity of residential consumption at the next point) and decreasing in E, the scale

of the exogenous “environment”, which thus provides a sufficient parameterisation for the

magnitude of the externality.
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3.4 Social Welfare Maximisation

The social planner acts behind a veil of ignorance and chooses aggregate land supply

(R = EHRh) to maximise a social welfare function given by the expected utility of a

household chosen randomly from the set of H. To simplify the analysis we asssume

that all households are identical, except for the externality.8 The expected utility of the

randomly chosen household that the social planner maximises is then given by:

max
R,G

W = EHUh = (1− α)EH ln (Gh −G∗) + αEH lnR + EH ln
(
E −Ri(h)+1

)
(3.13)

Substituting in the probability of the externality binding (and using the property of

symmetric households), we get that:

W = (1− α) ln (G−G∗) + α lnR

+ φ ln (E −R) + (1− Φ)(1− γ)
R−2∑
j=0

γj ln

(
E − R

j + 2

)

+

(
1− Φ− (1− Φ)(1− γ)

R−2∑
j=0

γj

)
lnE,

where, clearly, we must assume E −R > 0 to ensure a solution.

Defining a function for the expected marginal disutility of the externality as:

F (R; Φ, γ, E) = Φ

(
1

E −R

)
+ (1− Φ)(1− γ)

R−2∑
j=0

γj

(
j + 2

E − R
j+2

)
. (3.14)

Assuming a unit marginal rate of substitution between housing and non-housing (and

non-rival environment, except via housing), we have (using Equation 3.8 and 3.9)

W ′
R

W ′
G

=
α

1− α
Ĝ

R
− Ĝ

1− α
F(R; Φ, γ, E) = 1 = MRT (3.15)

implying

R

Ĉ
=

α

1 + F(R; Φ, γ, E)× Ĉ
. (3.16)

Since we have from the private optimisation that QR

Ĉ
= α, this implies that the price

is given by:

Q = 1 + F(R; Φ, γ, E)× Ĉ, (3.17)

8Although it is relatively easy to extend the model to have different incomes for the household, it will
not add anything to the intuition of the model, as the social planner has no tools to deal with inequality.
It will therefore only (unnecessary) complicate the mathematics.
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i.e., the expenditure share of housing in surplus consumption (Ĉ = C − G∗) is constant

and equal to α (implying a rising share in total consumption) but Pigovian land supply

implies that the share of real housing in surplus consumption (determined implicitly by

(3.16) is decreasing in the externality term F (R; Φ, γ, E), requiring an increase in the

price of land, Q.

3.5 Geometry

The model is given by three simple elements above (1) the private demand function from

Equation 3.9 (2) Marginal Rate of Transformation (set equal to one) and (3) The Pigovian

marginal social cost, found from the planner problem in Equation 3.17.

Figure 14 plots comparative statics for higher consumption(∆C > 0) and higher pop-

ulation density (∆D > 0):

Figure 14: Comparative Statics
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In response to a shift in consumption both demand curve and marginal social cost

functions shift, but the latter shifts by strictly less, so the new equilibrium implies increases

in both price and quantity; higher population density shifts the MSC curve only, thus

implies a higher land price but lower land supply per capita.

In contrast, in the absence of an externality the marginal social cost function would

simply be an invariant horizontal line, so that a 1% shift in aggregate consumption would

simply cause a
(

C
C−G∗

)
% rise in residential land supply.

3.6 Log–Linearisation of the Model

In the Appendix we show that we can log-linearise the model as

r̃ = λcc̃− λdd̃ (3.18)

where r̃, c̃ and d̃ are log deviations around an equilibrium where Ĉ = Ĉ and D = D are

some mean values (eg across our cross-section) but land supply ignores the externality.

18



We then show that we can write

λc = λc
(
D, s, α, κα

)
and λd = λd

(
D, s, α, κα

)
,

with λc,λd ∈ [0, 1], where κα is the consumption equivalent cost of the externality

to household h if Ri(h)1 > 0, in a a non-Pigovian equilibrium such that Q = 1 (which

straightforwardly implies R = αĈ). It is straightforward to show that we have

λc
(
D, s, α, 0

)
= ηc =

C

C −G∗
and λd

(
D, s, α, 0

)
= 0,

that is, in the absence of the externality population density would have no impact on

land supply, and land supply would simply be determined by the income elasticity of

residential land services.

In the next section we show that we can estimate the reduced form parameters λc and

λd econometrically, as determinants of the probability that any given point in our dataset

will be residential. In Section 5, we ask whether we can make sense of these reduced form

estimates in terms of plausible structural parameters.

4 Estimation

We do not have directly measured data on residential land for our sample of 27 countries.

Instead we have a sample of around a quarter of a million points from the LUCAS survey,

which are classified both by land use and by land cover.

There are two alternative approaches to the use of the survey data. The first approach

follows the methodology outlined in section 2, which translates shares of different point

classications in the total number of points into area estimates. For relatively small shares

(typically the case for residential land) these estimates are subject to error, but with a

sampling error that is clearly reducing in the geographic size of the total area considered

(since the number of points is at least approximately proportional to geographic area).

For most, except a few small countries, Figure 4 showed that the resulting standard errors

for residential land estimates are small, but non-negilible for some countries, especially

after allowing for spatial correlation. More crucially, since geographical area is crucial

to low standard errors, if we wish to make use of regional level data (for which we have

at least some data), the resulting estimates of residential land shares at a regional level

have to be viewed as having wide margins of error, and thus are unsuitable to direct

econometric analysis.

The alternative approach, which we apply, is to use point level data. This allows us to

use point–level regressors (in particular to capture spatial correlation) alongside regional

and national regressors where available. It is straightforward to show that the loglinear

approximation of Pigouvian supply can be manipulated to generate a probability that a

given point is residential.
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We can look at this in two stages. We first consider the impact of spatial correlation,

which is generic to all our point–level estimation methods.

4.1 Capturing spatial correlation

We have a set of points, {Sijk}, i = 1, . . . , 269, 328,9 which are zero (non-residential) or 1

(residential), in j = 1, . . . , 261 regions, and k = 1, . . . , 27 countries.

We can model the conditional probability that a given point is residential as

P (Sijk = 1 | r̄ijk) = ρjkr̄ijk + (1− ρjk)pjk, (4.1)

where r̄ijk is the spatial autoregressive term, which can be interpreted straightforwardly as

the local residential share in the neighbourhood of a given point. pjk is the unconditional

probability (pjk = P(Sijk = 1)), which we will define more precisely later.

This implies that our model is a Spatial Autoregressive model (SAR) as in Vega and

Elhorst (2013) and (Pesaran, 2015, pp.797–816) and the spatial autoregressive term can

be writen as:

r̄ = WS,

where S is the vector of individual points stacked (Sijk) and W is the spatial lag matrix

given by:

W =


w11 w12 · · · w1n

w21 w22

...
. . .

wn1 wnn


with the restrictions that the individual elements in the matrix is given by:

wij =

1/N ∀i 6= j and j is part of nearest N points to i

0 Otherwise

The unconditional probability, pjk, in region j of country k are given by:

pjk = E (Sijk) =
Rjk

Ljk
(4.2)

where Rjk is residential land (not directly observable), and Ljk is total land in region j

of country k (which we can take to be perfectly observable). Since Rjk is not directly

observable, nor can pjk be. We assume the expected value of the spatial correlation term,

to be equal to the unconditional probabilities.10

9We lose a few numbers observations, from the points without any neighbouring points close it to
10This is only approximately true, as the adjacent points to other regions, will mbe slightly different,

but only marginally change the results
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To estimate Equation 4.1, we first model the unconditioanl probabilities as either

constant or a national (regional) dummy, together with the effect of the spatial correlation

and the country (and regional) heterogeniety:

Sijk = ρ̂jkr̄ijk + (1− ρ̂jk)p̂jk + ûijk (4.3)

We estimate the spatial correlation term for both a homogenous spatial correlation

term (at a national and regional level) as well as heterogenous and together with national

(or regional dummies), we get the results reported in the table 1:
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Table 2: The probability that any LUCAS survey point is classified as residential: Spatial Correlation and regional dummy variables

Broad Residential Narrow Residential
B1 B2 B3 B4 B5 B6 N1 N2 N3 N4 N5 N6

Conditional

ρ̂
0.497

(0.01)
0.425

(0.007)
0.309

(0.007)
0.372

(0.01)
0.322

(0.007)
0.227

(0.008)

¯̂ρk
0.345

(0.179)
0.264

(0.173)
0.260

(0.207)
0.198

(0.204)

¯̂ρjk
0.155

(0.377)
0.061

(0.419)
Unconditional

p̂
0.035

(0.001)
0.015

(0.000)

¯̂pk
0.043

(0.041)
0.043

(0.041)
0.022

(0.033)
0.022

(0.033)

¯̂pjk
0.061

(0.072)
0.061

(0.071)
0.058

(0.118)
0.028

(0.039)
0.028

(0.039)
0.028

(0.038)
R2 0.022 0.025 0.026 0.031 0.032 0.035 0.010 0.012 0.014 0.017 0.018 0.023
SSR 8773 8744 8735 8691 8683 8655 3810 3801 3796 3782 3778 3762
AIC −3.42 −3.43 −3.43 −3.43 −3.43 −3.43 −4.26 −4.26 −4.26 −4.26 −4.26 −4.27
BIC −3.42 −3.42 −3.42 −3.41 −3.41 −3.39 −4.26 −4.26 −4.26 −4.24 −4.24 −4.22
Parameters 2 28 54 262 288 522 2 28 54 262 288 522

Observations: 269, 238. Standard errors in brackets. Estimation of Equation 4.3: Sijk = ρ̂jkr̄ijk + (1− ρ̂jk)p̂jk + ûijk, with the
unconditional probabilities (p̂jk) specified by either a constant term, national or regional dummy. Sijk is equal to 1 if a given point is
classified as residential (either broad or narrow), and 0 otherwise. Coefficients with a bar above are the mean group estimates
(Pesaran et al., 1996) given by: ρ̂k = 1

K

∑
k ρ̂k and ¯̂γk = 1

K

∑
k γ̂k.
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As can be seen from the table, the best fit we can get of the data, requires quite a lot

of parameters, to make the individual regions have both a heterogenous constant and a

heterogenous interaction with the spatial lag term with 522 parameters to map the 261

regions. The Mean Group estimates of the dummy variables are calculated as outlined by

(Pesaran et al., 1996, pp.155–156). As is to be expected, the more dummy variables in

the model, and the greater the degree of heterogeneity allowed in the spatial correlation

parameter, the lower the resulting mean estimate of the degree of spatial correlation. It

seems likely however that such a highly parameterised model may understate the true

degree of spatial correlation.11

4.2 Modeling the unconditional probability of residential land

In Section 4.1 we estimated regional and national residential probabilities directly, using

dummy variables, to allow us to focus on the estimates of spatial correlation, but at the

cost of a very large number of parameters.

We now attempt to estimate the determinants of these regional probabilities, using

the reduced form of the model of Pigovian land supply set out in Section 3, which can be

written as

ln

(
Rjk

Hjk

)
= β + λc ln

(
Cjk
Hjk

)
− λd ln

(
Hjk

Ljk

)
(4.4)

whereHjk is the population, Cjk is aggregate consumption, and Rjk is the unobservable

total residential land (which the LUCAS dataset gives us an estimate of). This in turn

can be tranformed straightforwardly to give the implied unconditional probability that

any given point is residential:

ln pjk = ln

(
Rjk

Ljk

)
= ln

(
Rjk

Hjk

)
+ ln

(
Hjk

Ljk

)
= β + λc ln

(
Cjk
Hjk

)
+ (1− λd) ln

(
Hjk

Ljk

)
where now all terms on the right-hand-side apart from the error term are measurable,

thus we have the implementable regression with regional/country regressors (a special

case of our regression Equation 4.3):

pjk = exp

(
β + λc ln

(
Cjk
Hjk

)
+ (1− λd) ln

(
Hjk

Ljk

))
(4.5)

Which we can estimate by nonlinear Least Squares. Note that this specification au-

11By analogy with temporal serial correlation, where a sufficiently large number of dummy variables
will, in the limit, capture a large proportion of serial correlation, but typically only with the benefit of
hindsight. In our case, while we treat regional dummies as exogenous, they are clearly not: the definition
of regions postdates the emergence of population clusters.
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tomatically imposes a lower bound of zero for the implied probability (since both terms

are bounded below by zero).12 There is no implied upper bound of unity, but in practice

the implied estimate of the residential share is always so far below unity that this issue is

immaterial. Thus while in principle we might need to follow Angrist and Pischke (2009)

and estimate by restricted least squares, in practice there is no need to impose any re-

strictions in estimation. The specification in equation 4.5 does in principle allow for all

regressors to be measured at a regional level. In practice at present we measure land, Ljk

and population Hjk at a regional level and aggregate consumption Cjk = Ck at a national

level.

The error for the {ijk}th point is given by:

εijk = Sijk − P(Sijk = 1 | r̄ijk)

We need to allow for heteroscedasticity in the errors, since the estimated conditional

probability, and hence the variance of the point-wise errors, varies considerably across the

sample.

Or if we write the model is matrix notation (and using the spatial lag matrix notation):

E (S |WS) = WSρ+ (1− ρ) exp (Xδ)

4.3 Estimation Results of Residential Points

We estimate the above model using non-linear least squares (Davidson and MacKinnon,

1993, Greene, 2012). To disentangle the effect of the model, we estimate Equation 4.513.

We estimate the models for first the national level, with constant spatial correlation,

and then slowly add more heterogeneity in term of regional spatial correlation and as well

as exclude various elements to see how much they contribute to (assuming there isn’t a

strong bivariate relationship with the explanatory variables). The results are summarised

in table 3.

12Recall that our measure of spatial correlation is bounded between zero and one (r̄ijk ∈ [0, 1])
13We have tested for an intercept term to the models, but all for all of the specifications, the intercept

term was non-significant (in line with our theoretical model)
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Table 3: The probability that any LUCAS survey point is classified as residential: Spatial Correlation and implicit model of regional land
supply

Broad Residential Narrow Residential

B1 B2 B3 B4 N1 N2 N3 N4

Conditional

ρ̂
0.380

(0.007)
0.271

(0.008)

¯̂ρk
0.331
(0.0)

0.253
(0.0)

¯̂ρjk
0.256
(0.0)

0.163
(0.0)

Unconditional

β̂
−9.33

(0.238)
−9.33

(0.378)
−9.33

(0.395)
−9.34

(0.378)
−10.15
(0.348)

−10.17
(0.474)

−10.19
(0.467)

−10.24
(0.456)

λ̂c
0.3600

(0.0255)
0.3600

(0.0404)
0.3599

(0.0423)
0.3599

(0.0412)
0.3580

(0.0372)
0.3600

(0.0507)
0.3598

(0.0499)
0.3601

(0.0493)

λ̂d
0.4404

(0.0073)
0.4399

(0.0115)
0.4398

(0.0116)
0.4400

(0.0168)
0.4326

(0.0105)
0.4315

(0.0143)
0.4296

(0.0144)
0.4231

(0.0187)
R2 0.017 0.028 0.029 0.032 0.010 0.015 0.016 0.020
SSR 8, 817 8, 723 8, 713 8, 685 3, 810 3, 792 3, 787 3, 773
AIC −3.42 −3.43 −3.43 −3.43 −4.26 −4.26 −4.26 −4.27
BIC −3.42 −3.43 −3.43 −3.41 −4.26 −4.26 −4.26 −4.24
Parameters 3 4 30 264 3 4 30 264

Observations: 269, 238. Standard errors in brackets. Estimation of Equation 4.3: Sijk = ρ̂jkr̄ijk + (1− ρ̂jk)p̂jk + ûijk, with

the uncondtional probabilities (p̂jk) given by: exp
(
β̂ + λ̂cck + (1− λ̂d)djk

)
, as in Equation 4.5. Sijk is equal to 1 if a given

point is classified as residential, and 0 otherwise. r̄ijk is the spatial correlation term, ck is the log national consumption per
capita, and djk is the log regional population density. Models B1 and N1 only provide estimates of the unconditional
probabilities, ignoring spatial correlation. Models B2 and N2 impose homogenous spatial correlation terms, whereas models
B3, N3, B4 and N4 allow spatial correlation terms to vary at a national and regional level. The table shows mean groups
estimates (Pesaran et al., 1996) of heterogenous coefficient estimates.

25



As can be seen from the above table, all the regressors are highly significant. As is to

be expected from trying to predict a low probability event (bearing in mind the overall

low share of residential points in the total sample), the R2s are quite low, but with a

simple economic model such as model B2 or N2 in Table 3 we are close to replicating the

results given by the equivalent models in Table 2 for B2 and N2, which has a much higer

degree of parameterisation.

4.4 Estimation of regional and national aggregates

A a cross-check we can estimate the following equation at a regionally aggregated level:

ln

(
Rjk

Hjk

)
= β + λc ln

(
Yjk
Hjk

)
− (λd − 1) ln

(
Hjk

Ljk

)
+ ujk (4.6)

Where Rjk% are estimates of residential land constructed as outlined in Section 2.1.

In the absence of spatial correlation (or if the aggregated spatial correlation term was

orthogonal to regional regressors) this would be equivalent to a regional aggregation of the

point-wise equation, thus reducing the dataset to 261 observations. We can also aggregate

further to a national level, setting Rjk = Rk, which reduces to just 27 observations.
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Table 4: Direct estimation of reduced form model of land supply on regional and national data

Broad Residential Narrow Residential
National data Regional data National data Regional data
BN1 BN2 BR1 BR2 BR3 NN1 NN2 NR1 NR2 NR3

Intercept (β)
1.053

(1.464)
2.433

(0.672)
−0.043
(0.627)

0.411
(0.594)

2.708
(0.214)

3.486
(1.448)

3.798
(0.652)

0.755
(0.710)

1.647
(0.680)

2.311
(0.238)

Consumption (λc)

National
0.130

(0.123)
0.270

(0.058)
0.029

(0.122)
0.152

(0.066)

Regional
0.199

(0.048)
0.057

(0.055)
Pop. Density (λl)

National
0.356

(0.074)
0.337

(0.073)
0.065

(0.073)
0.060

(0.071)

Regional
0.329

(0.024)
0.343

(0.025)
0.308

(0.024)
0.226

(0.027)
0.224

(0.029)
0.214

(0.027)
R2 0.463 0.441 0.431 0.422 0.384 0.028 0.026 0.215 0.202 0.199
SSR 3.12 3.25 48.87 49.67 52.91 3.05 3.06 60.96 61.98 62.24
AIC −2.16 −2.12 −1.68 −1.66 −1.60 −2.18 −2.18 −1.44 −1.42 −1.42
BIC −1.43 −1.63 −1.55 −1.53 −1.51 −1.45 −1.69 −1.31 −1.29 −1.33
Parameters 3 2 3 3 2 3 2 3 3 2
Observations 27 27 261 261 261 27 27 257 257 257

Standard errors in brackets. Estimate of Equation 4.6: rjk = β̂ + λ̂ccjk + (1− λ̂d)djk + ûjk. Where rjk is our LUCAS estimate of the
log regional (or national) residential land per capita, cjk is the log consumption per capita (regional or national), and djk is the log
population density. BN1 and NN1 shows the estimation using national aggregates where BN2 and NN2 is at the national level but
excludes consumption.
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Table 4 shows that, using only national data, the lack of a cross-sectional bivariate cor-

relation between consumption per capita and residential land per capita noted in Section

2.2.4 is also evident in a multivariate framework: the implied estimate of λc is positive

but insignificant. However, on regional data, once we condition on land per capita (the

reciprocal of population density) at a regional level, the estimate of λc is larger, and sig-

nificantly different from zero, whether we use national data on consumption or a regional

proxy, regional GDP per capita.

5 Pigovian Land Supply? Attempting to make sense

of the econometric reduced form.

In setting out the our theoretical model in Section 3 we derived a log-linear reduced

form from a model of Pigovian land supply, which we have shown is at least qualitatively

consistent with our econometric estimates of reduced form coefficients. However, on closer

inspection it proves distinctly harder to get even an approximate quantitative match that

allows us to rationalise what we observe with a truly Pigovian equilibrium.

We have seen that the link between the theoretical model and the observable reduced

form can be reduced to the impact of four key magnitudes: α, the weight of housing in

total consumption; κα, the consumption equivalent value of the externality (evaluated in

the absence of any attempt to mitigate it by Pigovian policies); D, population density;

and s, a parameter determining spatial correlation.

Clearly a truly Pigovian policy would be required to trade off the cost of the externality,

κα against the utility gain of higher housing, captured by α. We can get at least a ballpark

value for α by looking at shares of housing expenditure in total consumption, as given

in Table 1. These have a cross-sectional average around 16%. Under the maintained

assumption of log utility (hence unit price elasticity) this magnitude will be invariant

to the price of land; but must clearly be a significant over-estimate of α, since only a

fraction of housing expenditure is on land per se. We start by setting α = 0.05. Since κα

is inherently un-knowable, we allow it to vary over its full range of [0, 1] .

Spatial correlation, for which we have shown there is nontrivial econometric evidence,

matters in our model because, for any given value of population density, D, it increases

Φ, the probability that the neighbouring point will be residential. In the absence of

spatial correlation, this would reduce to the unconditional probability of a given point

being residential: but we have seen that observed residential shares are so low that this

would make it very unlikely that the externality will occur, thus reducing its impact on

the social planner, who maximises the expected utility of a randomly chosen household.

Thus higher spatial correlation accentuates the impact of the externality. Since, ceteris

paribus, residential consumption would rise with aggregate consumption, this means that

it will dampen the impact of higher consumption on land supply (ie, ∂λc/∂s < 0).

However at the same time, higher spatial correlation will, ceteris paribus, make popu-
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lation density less important, simply by inspection of equation 3.2, which determines Φ,

the Markov probability that point i (h) + 1 will be residential, which can be re-written as

Φ = s+D(1− s).

Figure 15: Calibrations: Realistic Calibration

Figures 15 and 16 illustrate the difficulties of reconciling the reduced form with plau-

sible structural parameters.

In figure 15 we pick what appear, a priori, relatively plausible values of α = D =

0.05, and s = 0.5, and then plot both reduced form parameters as a function of κα, the

consumption equivalent value of the externality 14 We work in deliberately round values

since our purpose is purely to illustrate the puzzle, rather than seek a precise match.

The two key features illustrated in this first calibration are, first, that the externality

needs to be large (with an impact of the order of 10% to 20% of the consumption of

affected households) to bring down the reduced form consumption elasticity to anything

close to the observed value of around 0.35; but, second, more crucially, with this cali-

bration, population density has only a very modest impact on land supply, whatever the

consumption equivalent cost of the externality.

In Figure 16 we can get at least an approximate match for the two reduced form

coefficients, at a relatively modest (but still high) value of κα but only by making two

very significant changes.

The first is to pick an arbitrarily low value of α, which we set to one tenth of its

value in Figure 15. We can crudely characterise this as a “Nimbyist”outcome, in which

the social planner sets a very low weight on the utility gains from new housing. But this

alone will not provide a match: we also need to assume (against the strong evidence in

the data) that there is no spatial correlation (and thus set s = 0), which means that the

conditional and unconditional probability of the externality are equalised. Without both

of these features, we cannot even get close to matching both the reduced form coefficients.

14We assume that D is best captured by the residential share since this captures the probability of a
given point having an address on it.
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Figure 16: Calibrations: Unrealistic Calibration

We thus conclude that, at least on the basis of the simple model that we devise to

analyse the spatial distribution of land, it is very hard to characterise land supply policies

as truly Pigovian in nature. The very weak observed impact of higher consumption on

land supply requires either that the externality be very costly, or that its costs are given

excessive weight in the social planner’s problem (i.e., Nimbyism). But the strength of the

observed negative impact of population density is also a puzzle - despite the apparent

intuition that less populous regions and countries will have “more space” for residential

land. It is actually very difficult to rationalise the strength of this relationship, given that,

as shown in Section 2, so little land is actually used for residential purposes.

6 Conclusions

In this paper we have analysed a new dataset of around 1/4 million survey points, taken

from the European Land Use and Cover Area-Frame Statistical Survey (LUCAS), cov-

ering 27 EU countries. This allows us both to derive national and regional estimates of

residential land on a per capita basis, and model its spatial distribution and economic

determinants, in light of a theoretical model in which restrictions on land supply attempt

to mimic a Pigovian optimum.

Our econometric results show that supply of residential land per capita is affected

rather weakly by higher consumption per capita, but somewhat more strongly (and neg-

atively) by population density. While this is qualitatively in line with what would be

predicted by a truly Pigovian land supply, we show that it is very hard to rationalise the

magnitude of these effects with plausible structural parameters.
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Appendix A Datasources

Table 5: Datasources

Data Eurostat code

LUCAS
Consumption nama 10 co3 p3 1 data
Housing Expenditures nama 10 co3 p3 1 data
Agricultural Output nama 10 a64
Forestry Output nama 10 a64
Regional Gross Value Added
Population demo r d2jan
Regional Area demo r d3area
National Area demo r d3area

Appendix B The LUCAS Methodology

Eurostat’s “Land Use and Cover Area frame Statistical Survery” (LUCAS) is a two phase

sample survey. The first phase is an equally spaced systematic grid of 1,078,764 obser-

vations (in the 2012 sample) in 27 EU countries, separated by 2 km in the four cardinal

directions. Each of the points in the first-stage sample are photo-interpreted and classified

in terms of land cover,15 as well as eligibility (based on accessibility) for the second stage

of the survey.16 Together these two classifications give the stratifications of the first stage

sample. For the second a subset of 270,277 eligible points from the first-stage sample were

visited in person by a surveyer. It is the dataset derived from this physical survey that

we use in this paper.

The individual points are then visited as in the figure below and interpretated by the

photo taken:

The area estimates of land use and cover classification for the individual NUTS2

regions are then estimated following the methodology of Eurostat (following the method-

ology of Cochran (1977, chpt. 12)) as:

15Using the “CORINE” classification. 1: Arable, 2: Permanent Crop, 3: Grassland, 4: Woodland and
shrubland, 5: Bareland, 6: Artificial, 7: Water and Wetland

16Only points that were both below 1,500m in altitude and accessible by road were included in the
second stage.
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Figure 17: The LUCAS dataset
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Ljk,c = Ajk
∑
h∈ψ

Tjk,h
Tjk

tjk,hc
tjk

, (B.1)

where Ajk is the total area of region j in country k, Tijk,h is the number of points with

stratum classification h and ψ is the set of stratum classifications (1 to 7) which is part

of the second phase survey and Tjk is the total number of points in the first phase for

region j and country k. tjk is the total number of points for the region in the second

phase survey and tjk,hc is the number of points with land use/cover classifcation c within

stratum h.

For robustness we proceed with two different definitions of residential land, using land

use and cover definitions from the LUCAS survey (Eurostat, 2013). The first, “broad”

residential land, uses all survey points classified as residential by land use (LU “U370” in

the dataset). The alternative “narrow” measure uses only the subset of residential points

that are also classified by land cover as artificial structures (land cover A11 “Buildings

with one to three floors” and A12 “Buildings with more than three floors”).

We augment the LUCAS dataset by using Eurostat data on population and gross value

added at a regional level (from NACE) as well as Consumption, Actual Rent, Implied Rent

and Maintenance at a national level from national accounts (NAMA).
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Figure 18: Observation 44503638
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Appendix C Log–Linearisation of the Model

In log terms, our equlibrium condition of the model in Equation 3.16 can be written as

lnR− ln Ĉ = ln(α)− ln
(

1 + elnF(R,D|s,E)+ln Ĉ
)

︸ ︷︷ ︸
Γ(R,D,Ĉ)

Recall that the probabilities is a function of the population density, e.g.:

Φ(D, s) = D + (1−D)s

γ(D, s) = 1−D(1− s)

Which means that if we log-linearise the above equation, with respect to residential

consumption (R), total consumption (C) and the population density (D) and defining

r̃ = R−R̄
R̄

for all the variables, we get the log-linearised model as:

r̃ −
(

C̄

C̄ −G∗

)
c̃ = −

(
ΓĈ ×

¯̂
C

Γ(R,D, Ĉ)

C̄
¯̂
C

)
c̃−

(
ΓR × R̄

Γ(R,D, Ĉ)

)
r̃ −

(
ΓD × D̄

Γ(R,D, Ĉ)

)
d̃

Which we can write as:
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r̃ = (1− µ) ηcc̃− µηrr̃ − µηdd̃

where

µ =
F(·) ¯̂

C

Γ(·)
=
F(·)Ĉ

1 + F(·)Ĉ

ηc =
C̄

C̄ −G∗

ηr =
FR(·)R̄
F(·)

ηd =
FD(·)D̄
F(·)

for some (reduced form equlibrium outcome)

r̃ = λcc̃− λdd̃ (C.1)

where

λc =

(
1− µ

1 + µηr

)
ηc and λd =

(
µ

1 + µηr

)
ηd (C.2)

with λc, λd ∈ [0, 1]. Thus far, in line with our empirics.

However, while we get a qualitative match, it is by no means so easy to get a quanti-

tative match, particularly for the magnitude of the coefficient on population density.

To explore further, for simplicity linearise around an equilibrium where the key ratio
Ĉ

E−R (determining µ, and hence the λi) is evaluated in an equilibrium where Ĉ = Ĉ is

some mean value (eg across our cross-section) and land supply ignores the externality,

such that Q = 1, hence R = αC. Using (3.12) we have R
E−R = κ

1−κ , and hence

µ =
Φ Ĉ
R

R
E−R

1 + Ĉ
R

R
E−R

=
Φ
α

κα
1−κα

1 + Φ
α

κα
1−κα

= µ (Φ (D, s) , α, κα)

where κα = E−αĈ
E

. Substituting into (C.2) we have, using ηr = κα
1−κα ,

λc (Φ, α, 0) = λc (0, α, κα) = 1

λd (Φ, α, 0) = λd (0, α, κα) = 0

as expected. There is however a problem in finding parameter combinations that map

to values similar to what we find in the data, for plausible values of κα. A high value of

s, and hence Φ, lowers λc by enough to match our estimates but implies extremely low

values for λd.
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