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Abstract

To study the drivers of the employment reallocation across sectors and occu-

pations between 1960 and 2010 in the US we propose a model where technology

evolves at the sector-occupation cell level. This framework allows us to quan-

tify the bias of technology across sectors and across occupations. We implement

a novel method to extract changes in sector-occupation cell productivities from

the data. Using a factor model we find that occupation and sector factors jointly

explain 74-87 percent of cell productivity changes, with the occupation compo-

nent being by far the most important. While in our general equilibrium model

both factors imply similar reallocations of labor across sectors and occupations,

quantitatively the bias in technological change across occupations is much more

important than the bias across sectors.
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1 Introduction

Over recent decades the labor markets in most developed countries have experienced

substantial changes. There has been structural change, the reallocation of labor across

sectors, while at the occupational level labor markets experienced polarization; em-

ployment shifted out of middle-earning routine jobs to low-earning manual and high-

earning abstract jobs. Each of these patterns separately is typically explained through

non-neutral productivity growth. Technological change biased across sectors is the

leading explanation for structural change, whereas technological change that is biased

across occupations is a prominent explanation for job polarization.1 The goal of this

paper is twofold: to identify the nature of technological change, and to assess what

type of technological change is quantitatively relevant for the two phenomena.

We develop a new approach in assessing the nature of technological change that is

driving these reallocations. We specify a flexible model in which technological change

can be biased towards workers in specific sector-occupation cells. Drawing on key

equations of the production side of this model together with data from the US Cen-

sus and from the U.S. Bureau of Economic Analysis between 1960 and 2010 we extract

the evolution of productivity for each sector-occupation cell. We use a factor model

to quantify the bias in technology by decomposing the change in the cell level pro-

ductivities into a neutral, a sector, and an occupation component. The neutral com-

ponent captures general purpose technologies affecting all workers, the sector com-

ponent captures productivity changes that are common to all workers within a sector

(linked to the output an industry or firm produces), while the occupation component

captures changes that are common to workers within an occupation (linked to the task

content of an occupation). Having extracted these components, first we evaluate their

importance in the observed productivity changes at the sector-occupation cell level,

and second using our model we evaluate their role in the reallocation of employment

across sectors and occupations, as well as in the evolution of occupational wages and

of sectoral prices.
1See for example Kongsamut, Rebelo, and Xie (2001), Ngai and Pissarides (2007), Acemoglu and

Guerrieri (2008) for structural change, Autor, Katz, and Kearney (2006), Goos and Manning (2007),
Autor and Dorn (2013), Goos, Manning, and Salomons (2014), Michaels, Natraj, and Van Reenen (2014)
for polarization.
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One strength of our fully flexible approach is that it does not impose any partic-

ular type of technological progress. This is especially important due to some trends

in occupation and sector employment that have not received much attention in the

literature. First, the goods sector has the highest share of routine workers; by far most

of the decline in routine employment occurred in the goods sector, and conversely

almost all of the contraction in goods sector employment occurred through a reduc-

tion in routine employment. Second, the high-skilled service sector has the highest

share of abstract workers; most of the expansion in abstract employment happened

in the high-skilled service sector, and most of the increase in high-skilled service em-

ployment was due to an expansion in abstract employment. From these patterns of

sector-occupation employment it is clear that the sectoral and the occupational reallo-

cation of employment are closely linked, suggesting a connection between structural

change and polarization.2 It is precisely this link that makes it difficult to identify the

true nature of technological change.

The approach in this paper departs from the recent literature connecting the phe-

nomena of structural change and polarization across occupations in that we do not a

priori restrict the nature of technological change. In Bárány and Siegel (2018) we show

that forces behind structural change, i.e. differences in productivity growth across sec-

tors, lead to polarization of wages and employment at the sectoral level, which in

turn imply polarization in occupational outcomes. In that paper we took the unbal-

anced sectoral labor productivity growth from the data and analyzed its implications,

whereas in this paper we aim to quantify to what extent technological progress is truly

specific to sectors and to occupations. Conversely, Goos et al. (2014) suggest that dif-

ferential occupation intensity across sectors and differential occupational productivity

growth can lead to employment reallocation across sectors. Duernecker and Herren-

dorf (2016) show in a two-sector two-occupation model that unbalanced occupational

productivity growth by itself provides dynamics consistent with structural change and

with the trends in occupational employment, both overall and within sectors. Lee

and Shin (2017) allow for occupation-specific productivity growth and find that their

2Appendix A.1 lists the classification of occupations and industries and we show these employment
patterns in Figure 8.
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calibrated model can quantitatively account for polarization as well as for structural

change, and in an extension find a limited role for sector-specific technological change.

The close link in the data between the sectoral and occupational reallocation of

labor explains why models, such as those mentioned above, which allow for produc-

tivity growth differences only at the sectoral or only at the occupational level can go a

long way in accounting for the reallocations across both dimensions. However, such

restricted models load all differences in technological change on one type of factor,

therefore not allowing to identify whether these differences arise indeed at the level of

sectors or of occupations. Beyond the theoretical, academic interest in understanding

what drives changes in occupational composition within and across sectors, it also has

profound policy implications. Recently much of the political debate has focused on

active labor market policies (such as training programs), and on protectionist policies

aiming at maintaining certain industries of the home economy. While in our model

there are no frictions or externalities which would justify these policies, we view our

model as an important and useful first step in evaluating such policies. Our general

equilibrium model focuses on the technology side of the economy, but could be ex-

tended to include a frictional labor market or job specific human capital accumulation.

In the analysis we rely on our flexible model to infer in each period cell produc-

tivities. Note that without a model it is impossible to quantify technological change

that is biased towards a particular factor in production. While observing factor inputs

and output allows the computation of a neutral productivity,3 it is not possible to in-

fer factor-specific productivities without making assumptions about the structure of

production. We assume a CES production function over the different types of occupa-

tional labor in each sector. This is similar to Katz and Murphy (1992) who assume that

skilled and unskilled labor produce a final good according to a CES production func-

tion and estimate the elasticity of substitution between these education groups and a

constant trend in skill-biased technological change. Krusell, Ohanian, Rı́os-Rull, and

Violante (2000) specify a nested CES production function between capital equipment,

3This is how total factor productivity (for instance at the sectoral level) is extracted; note that
changes in measured TFP might actually be driven by technological change augmenting only an indi-
vidual factor of production. For example Greenwood, Hercowitz, and Krusell (1997) take the observed
equipment price index as a measure of investment-specific (factor-biased) technological change and use
a Cobb-Douglas production function to back out neutral productivity growth.
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unskilled and skilled labor, and estimate the various substitution elasticities using the

equipment price index as a measure of capital-equipment biased technological change.

While our model does not feature any form of capital as inputs to production and we

focus on labor productivities throughout, capital-driven technological change, biased

or neutral, is captured in our cell productivities. Both these papers impose a specific

form of factor-biased technical change, and it is this what allows them to infer the

elasticity of substitution. Our approach is very different, while we do not estimate the

elasticities, we also do not restrict the form of technological change, but we extract

factor productivities from the data for a wide range of elasticities.

In the model productivity growth is specific to the sector-occupation cell. It is

true that in such a setup one in general has to identify more parameters than in a

setup which has sector-specific and/or occupation-specific technological change (but

not their interaction). However, given this flexible setup we pin down these cell pro-

ductivities exactly from the data using the production side of the model, rather than

approximately matching fewer targets.4 Moreover, we believe that technologies are

linked to the job that workers do, where a job is defined by both the sector and the

occupation of the worker (i.e. the factor of production is the sector-occupation labor

input). Note, assuming that productivity evolves at the sector-occupation cell level

does not rule out common trends in technological change, for instance at the sector or

the occupation level.5 To put it differently, the framework is flexible enough to allow

for technological change to be specific to certain occupations, which is the key driver

emphasized in the polarization literature, or to certain sectors, the mechanism often

4The targets we use forO occupations and S sectors are: S ·(O−1) occupational labor income shares
within sectors, S − 1 relative sectoral prices, and the overall growth rate of the economy.

5It is easy to conceive that some technologies improve a given occupation’s productivity in a similar
way regardless of the sector of work. For example an accountant’s productivity has increased by the
advent of computers, though potentially more so in sectors characterized by larger firms. There are
also occupations which – though similar – perform different tasks depending on the sector of work.
For instance, think of a cleaner working in a law firm versus in a production plant. The productivity
of a cleaner working in a production plant presumably increased quite significantly in the last decades
due to the introduction of specialized cleaning equipment for the production plant, whereas the pro-
ductivity of the cleaner in a law firm probably has stayed constant since the introduction of vacuum
cleaners. Regarding sector-specific productivities, Ford’s Model T is a good example: by introducing
the moving assembly line in production, rather than the then usual hand crafting, the productivity of
workers directly producing the car increased, leading to a spillover on other workers in Ford, and later
to workers in other car producers. In this sense the introduction of assembly lines in car manufacturing
can be regarded as a sector-specific productivity change.
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stressed in the structural change literature.

We take these sector-occupation cell productivity changes and use a factor model

to decompose them into a neutral, a sector, an occupation and a residual component,

where the last component captures productivity growth that is specific to the sector-

occupation cell. From these components we construct counterfactual cell productiv-

ity series to quantify their importance in the observed cell productivity growth. We

conduct this decomposition for a wide range of the elasticity of substitution between

different occupations. We find that for values typically considered in the literature

(an elasticity between 0.5 and 0.9), around a quarter of cell productivity growth is

specific to the sector-occupation cell, between 66 and 80 percent can be attributed to

occupation-specific productivity growth, 3-9 percent to sector-specific components,

and 0-2 percent of productivity growth is neutral (i.e. common to all cells). We in-

terpret this as evidence that most of productivity changes are not neutral, but biased

across occupations and to a lesser extent across sectors, and that a significant part of

technology is specific to the sector-occupation cell. Factor models have been used for

instance in Stockman (1988), Ghosh and Wolf (1997) and Koren and Tenreyro (2007).

While all these papers run a factor model at the country-sector level, they use their

estimates to decompose the volatility of a series at a higher level of aggregation. We,

however, not only study a very different question, but build counterfactual cell pro-

ductivity series based on our factor model estimates.

Finally, to run counterfactual experiments we close the model by assuming that a

representative household chooses sectoral consumption in order to maximize a non-

homothetic CES utility and that individuals optimally choose their occupation subject

to idiosyncratic entry costs. We first confirm that the model with the baseline cell

productivities matches the data well. We then feed the counterfactual productivity

paths into the model to determine how important each component is in explaining

various outcomes of interest. We conclude that while qualitatively both the sector and

the occupation productivity components generate employment and wage paths in line

with the data, quantitatively the occupation component gets much closer. To explain

the evolution of sectoral prices, both sector and occupation components are needed.

For occupational income shares within sectors and employment shares at the cell level,
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the sector-only component has almost no effect, whereas the productivity component

specific to the sector-occupation cell has a significant role.

Overall our results suggest that to study the joint evolution of employment, wages

and prices one needs to consider technological change at the sector-occupation cell

level. However, to study labor market outcomes at the sector or at the occupation

level, it is sufficient to model occupation-specific technological change. An implication

of these findings is that policies targeting workers’ occupational choice might be better

at improving labor market outcomes than industrial policies.

The paper proceeds as follows: section 2 introduces the model and section 3 presents

the data and the model parameterization. Section 4 shows the decomposition of pro-

ductivity growth into components, and section 5 analyzes what the identified compo-

nents imply for economic outcomes. The final section concludes.

2 Model

We assume that there is a continuum of measure one of heterogeneous workers in

the economy. Workers optimally select their occupation and can freely choose which

sector of the economy to supply their labor in. This implies that in equilibrium there

is a single wage rate in each occupation which is common across sectors. We further

assume that the different types of labor are imperfect substitutes in the production

process in each sector, and that each sector values these types of workers differently in

production.

The three types of workers are organized into a stand-in household, which derives

utility from consuming all types of goods and services, and maximizes its utility sub-

ject to its budget constraint. The economy is in a decentralized equilibrium at all times:

firms operate under perfect competition, prices and wages are such that all markets

clear. We use this parsimonious static model to pin down how the productivity of the

different occupations in each sector changes over time.
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2.1 Sectors and production

There are three sectors in the economy which respectively produce low-skilled services

(L), goods (G), and high-skilled services (H). All goods and services are produced

in perfect competition. Each sector uses only labor as input in its production, but

each combines all three types of occupations (manual, routine and abstract), with the

following CES production function:

YJ =
[
(αmJ lmJ)

η−1
η + (αrJ lrJ)

η−1
η + (αaJ laJ)

η−1
η

] η
η−1

for J ∈ {L,G,H}, (1)

where loJ is occupation o labor used in sector J , αoJ > 0 is an sector-occupation spe-

cific labor augmenting technology term for occupation o ∈ {m, r, a} in sector J ,6 and

η ∈ [0,∞] is the elasticity of substitution between the different types of labor.7 In

the initial year αoJ reflects the initial productivity as well as the intensity at which

sector J uses occupation o, whereas any subsequent change over time reflects sector-

occupation specific technological change. This formulation of the production function

is very flexible and does not impose any restrictions on the nature of technological

change. In particular, it does not require taking a stance on whether technological

change is specific to sectors or occupations.8 We use the model to calculate from the

data the sector-occupation specific productivity terms, which we then decompose into

common factors, as described in section 4.

Each firm takes prices and wages as given, and firms’ first order conditions pin

6An alternative, isomorphic way of writing the production function in (1) is YJ =[
xmJ(AmJ lmJ)

η−1
η + xrJ(ArJ lrJ)

η−1
η + xaJ(AaJ laJ)

η−1
η

] η
η−1

, where xoJ are constant weights and AoJ

are cell productivities that can change over time. The two formulations are equivalent since one can

rewrite αoJ = x
η
η−1

oJ AoJ . In this sense the αoJ terms comprise of a fixed weight and a changing sec-
tor specific occupational labor augmenting technology. In our quantitative work we are interested in
changes in productivity over time, which – due to the weights being constant – are equal in the two
formulations, ∆ logαoJ = ∆ logAoJ .

7We assume the same elasticity of substitution in all sectors since we do not want to confound
changes in productivity that are specific to sectors with potential differences in elasticities.

8Given the close link between the sectoral and the occupational reallocation of employment, which
we discussed in the introduction, had we set up the production function allowing only for sector-
specific or only for occupation-specific terms we would potentially have attributed changes to this one
factor which are actually due to the other factor. Our approach circumvents this problem as we do not
impose any a priori restrictions.
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down the optimal relative labor use as:

lmJ
lrJ

=

(
wr
wm

)η (
αmJ
αrJ

)η−1

, (2)

laJ
lrJ

=

(
wr
wa

)η (
αaJ
αrJ

)η−1

. (3)

It is optimal to use more manual labor relative to routine labor in all sectors if the

relative routine wage, wr/wm, is higher. Additionally, if in sector J the term
(
αmJ
αrJ

)η−1

is larger then it is optimal to use relatively more manual labor in that sector. So for

example routinization, i.e. the replacement of routine workers by certain technologies,

would be captured by an increase in
(
αmJ
αrJ

)η−1

and in
(
αaJ
αrJ

)η−1

in all sectors J .

The firm first order conditions also pin down the price of sector J output in terms

of wage rates:

pJ =

[
αη−1
mJ

1

wη−1
m

+ αη−1
rJ

1

wη−1
r

+ αη−1
aJ

1

wη−1
a

] 1
1−η

. (4)

Finally using (2), (3) and (4) to express sector J output, optimal sectoral labor use can

be expressed as:

lmJ =

[
pJαmJ
wm

]η
YJ
αmJ

, (5)

lrJ =

[
pJαrJ
wr

]η
YJ
αrJ

, (6)

laJ =

[
pJαaJ
wa

]η
YJ
αaJ

. (7)

2.2 Households – occupational choice and demand for goods

The economy is populated by a unit measure of workers, who each have an idiosyn-

cratic cost for entering each occupation, but can freely move between the three sectors,

low-skilled services, goods, or high-skilled services, implying that in equilibrium, oc-

cupational wage rates must equalize across sectors. The cost that individuals pay for

entering an occupation is redistributed in a lump-sum fashion. Since the consumption

decisions are taken by the stand-in household, individuals choose the occupation that
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provides them with the highest income. Thus an individual i chooses occupation o if

wo − χio ≥ wk − χik for any k 6= o, k, o ∈ {m, r, a},

where wo is the unit wage in occupation o and χio is individual i’s cost of entering

occupation o. Since only the cost differences matter, we define χi1 ≡ χir − χim and

χi2 ≡ χia − χim. The optimal occupational choice is summarized in Figure 1.

lm
lr

la

wa − wr + χr − χm

wr − wm

wa − wm

χr − χm

χa − χm

Figure 1: Optimal occupational choice
Notes: The graph shows the optimal selection of individuals into manual, routine and abstract occu-
pations in terms of their idiosyncratic occupational cost differences as a function of occupational unit
wages wm, wr, wa.

Given the optimal occupational choice the fraction of labor supplied in the three

occupations is given by:

lm =

∫ ∞
wr−wm

∫ ∞
wa−wm

f(χ1, χ2)dχ1dχ2, (8)

lr =

∫ wr−wm

−∞

∫ ∞
wa−wr+χ1

f(χ1, χ2)dχ1dχ2, (9)

la =

∫ ∞
0

∫ min{wa−wr+χ1,wa−wm}

−∞
f(χ1, χ2)dχ1dχ2, (10)

where f(χ1, χ2) is the joint probability density function of the occupational cost differ-

ences.

The workers are organized into a stand-in household, which collects all income,
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and makes utility maximizing choices in terms of sectoral consumption. The stand-in

household solves the following problem:

max
cL,cG,cH

(
aL(cL + cL)

ε−1
ε + aGc

ε−1
ε

G + aH(cH + cH)
ε−1
ε

) ε
ε−1

s. t. pLcL + pGcG + pHcH ≤ lmwm + lrwr + lawa

where cL and cH allow for non-homotheticity in consumption demands, and ε < 1,

implying that goods and services are complements in consumption. We further as-

sume that aL + aG + aH = 1. The price of low-skilled services is denoted by pL, that of

goods is denoted by pG, while that of high-skilled services by pH . Assuming that the

household is rich enough to consume all types of goods and services (i.e. an interior

solution), optimality implies the following demand schedule:

CL =

(
aL
pL

)ε
fmwm + frwr + fawa + pLcL + pHcH

aεLp
1−ε
L + aεGp

1−ε
G + aεHp

1−ε
H

− cL, (11)

CG =

(
aG
pG

)ε
fmwm + frwr + fawa + pLcL + pHcH

aεLp
1−ε
L + aεGp

1−ε
G + aεHp

1−ε
H

, (12)

CH =

(
aH
pH

)ε
fmwm + frwr + fawa + pLcL + pHcH

aεLp
1−ε
L + aεGp

1−ε
G + aεHp

1−ε
H

− cH . (13)

2.3 Equilibrium

There are six markets in this economy: three labor markets, that of manual, routine

and abstract labor; and three goods markets, that of low-skilled services, goods, and

high-skilled services. There are six corresponding prices, out of which we normalize

one without loss of generality, wr = 1. The equilibrium is then defined as a set of

prices, wm, wa, pL, pG, pH , for which all markets clear.

Goods market clearing requires that YL = CL, YG = CG, and YH = CH . Note that

sectoral prices, pJ , and sectoral demands, CJ , depend on the endogenous occupational

wage rates, wm, wr and wa, as given in (4) and (11), (12), and (13). Then from (5), (6), or

(7) optimal occupation o labor use in sector J can be expressed as a function of manual
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and abstract wage rates:

loJ(wm, wa) =

[
pJαoJ
wo

]η
CJ
αoJ

for o ∈ {m, r, a} and J ∈ {L,G,H}.

The equilibrium then boils down to finding wage rates wm and wa such that the

labor markets clear:9

lmL(wm, wa) + lmG(wm, wa) + lmH(wm, wa) = lm,

lrL(wm, wa) + lrG(wm, wa) + lrH(wm, wa) = lr.

3 Calibration

We need to calibrate the sectoral production functions, the distribution of the costs of

entering the different occupations, and the utility function. In our model setup, there

is a dichotomy that allows to back out the sector-occupation cell productivities from

the data using only the production side. We therefore proceed in the following steps,

similarly to Buera, Kaboski, and Rogerson (2015). First, we compute cell productivi-

ties taking as given the occupational wage rates and employment shares, as well as the

sectoral income shares, in order to match in each period the income share of different

occupations within each sector, the relative sectoral prices, and the overall growth rate

of the economy. Second, we calibrate the distribution of costs such that it allows us to

match occupational employment shares and wages in the initial and final period. Fi-

nally, we calibrate the utility function such that the model matches the sectoral income

shares in the initial and final period.

3.1 Calibration targets

We use US Census and American Community Survey (ACS) data between 1960 and

2010 from IPUMS, provided by Ruggles, Alexander, Genadek, Goeken, Schroeder,

and Sobek (2010), to calculate occupational wage rates and occupational labor income

9If the manual and the routine markets clear, then the market for abstract labor clears as well due to
Walras’ law.
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shares within sectors, as well as each sector’s share in labor income.10 For these cal-

culations, we categorize workers into our three sectors based on their industry code

(ind1990), and into our three occupations based on a harmonized and balanced panel

of occupational codes as in Autor and Dorn (2013) and Bárány and Siegel (2018).

We calculate manual and abstract wage rates as the average hourly wage of a nar-

rowly defined group – 25 to 29 year old men – in the given occupation divided by that

in the routine occupation. This is in line with our normalization of wr = 1. We rely on

this measure – rather than on the average hourly wage of all workers within an occu-

pation – to limit the potential influence of compositional changes, for example due to

differential changes in the demographic composition of workers across occupations.11

The occupational wage rate targets are calculated as:

wm ≡
average hourly wage of 25–29 year old men in manual jobs
average hourly wage of 25–29 year old men in routine jobs

,

wa ≡
average hourly wage of 25–29 year old men in abstract jobs
average hourly wage of 25–29 year old men in routine jobs

.

We calculate the labor income share of occupation o in sector J as the ratio of total

labor income of workers in occupation o and sector J relative to the total labor income

of all workers in sector J :

θoJ ≡
earnings of occupation o workers in sector J

earnings of sector J workers
.

We can express occupational labor supply shares as:

lo ≡
earnings of workers in occupation o

wo∑
õ

earnings of workers in occupation õ
wõ

,

these are equivalent to occupational labor supplies in the model, as total labor supply

10In our model the sectoral labor income shares are equal to value added shares as there are no other
factors of production.

11This is similar to Buera et al. (2015), and it implies that all differences within an occupational group
in hourly wages are due to differences in the endowment of efficiency units of labor. Given that we do
not explicitly model heterogeneity in efficiency labor across individuals, the way we model selection
implies that selection into occupations is orthogonal to efficiency.
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is normalized to one. Finally, we calculate sectoral income shares as

ΨJ ≡
earnings of workers in sector J

total earnings
.

We use data from the U.S. Bureau of Economic Analysis (BEA) between 1960 and

2010 to get sectoral prices and the growth rate of GDP per worker between periods.

Table 4 in the Appendix contains all the calibration targets, and these are also plot-

ted along with the model outcomes in section 5.

3.2 Extracting sector-occupation cell productivities

As mentioned before, given the structure of the model we can infer the productivity

parameters directly from the data, without having to rely on a parameterization of the

model’s household side. We can do this conditional on a value for the elasticity of

substitution in production between different types of labor.

We calculate the nine cell-specific productivity parameters, the αs, in each period.

We back these out directly from nine targets: the labor income share of different occu-

pations within each sector, the relative sectoral prices, and the overall growth of the

economy. We calibrate these taking as given occupational wage rates, occupational la-

bor supplies, and the sectoral distribution of income. Our model allows us to express

the cell-specific productivity parameters as a function of the above data targets and

the elasticity of substitution in production.

In particular, given occupational wages, the labor income share of different occu-

pations within a sector pin down the ratios of αs within sectors in each period from

the firm’s optimality conditions (2) and (3):

αmJ
αrJ

=

(
θmJ
θrJ

) 1
η−1 wm

wr
, (14)

αaJ
αrJ

=

(
θaJ
θrJ

) 1
η−1 wa

wr
. (15)

The sectoral relative prices pin down (from (4)) the αs across sectors within each
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period, again given occupational wages:

αmJ
αmK

=
pK
pJ

(
θmJ
θmK

) 1
η−1

, (16)

where we also used the expressions for the relative αs within sectors.

Finally, the overall growth rate of output per worker pins down the evolution of the

αs over time, given the distribution of income across sectors and occupational labor

supplies. Appendix A.2 shows the full derivations.

To our knowledge, there is no consensus in the literature on the value of the elas-

ticity of substitution in production between the different types of occupational labor

within sectors. For this reason, we calibrate our model for a whole range of elasticities

in [0.1, 1.9]. We do not calibrate the model for η = 1, as for that elasticity the model – in

contrast to the data – would predict constant occupational labor income shares within

sectors and our strategy for extracting the cell-level productivities which exploits vari-

ation in these shares would not go through. Extracting the cell level productivity series

for η close to one is not a problem. However, notice that when η is close to one, in or-

der to replicate the observed variations in occupational income shares within sectors

and in sectoral prices, cell productivities are required to vary hugely both within and

across sectors, as equations (14), (15), and (16) show. This huge variation in produc-

tivities would make the calibration of the preferences numerically very difficult for

values of η close to 1.

3.3 Calibration of the cost distribution and of the consumption side

To close the model we need to parameterize the household side. It is important to

note that these choices matter only for model simulations but not for assessing the

contributions of sector and occupation factors to productivity growth at the sector-

occupation cell level.

To calibrate the distribution of cost differences, we assume that f(χ1, χ2) is a time-

invariant bivariate normal distribution,12 and we fix the correlation parameter to be

12For simplicity we assume that the distribution is time invariant. Allowing for changing costs
(for example as in Caselli and Coleman (2001)) would require more parameters to be calibrated, and
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0.4. Given this correlation, we calibrate the two means and the diagonal elements of

the variance-covariance matrix such that in the initial and final period for given unit

wages the cost distribution is able to match the employment shares. This calibration

procedure by construction limits the importance of the correlation parameter, as the

initial and final period outcomes are guaranteed to be the same regardless of its value.

Our robustness checks on the value of the correlation parameter confirm that it is nei-

ther qualitatively, nor quantitatively important; see Appendix A.4.

Finally we calibrate the preference parameters of the model. Following Ngai and

Pissarides (2007), we set the elasticity of substitution in consumption between the dif-

ferent sectoral outputs to ε = 0.2, implying that goods and the two types of services

are complements. Given all the production side parameters, and the distribution of

costs we calibrate cL, cH , aL, and aH (with aG = 1− aL − aH) to match the distribution

of the sectoral income shares in the initial and final year, i.e. in 1960 and 2010. This

also guarantees that the relative occupational wages in 1960 and 2010 are met in equi-

librium. Again, this procedure by construction limits the importance of the value of

the elasticity of substitution in consumption, our robustness checks in Appendix A.4

support this.

Table 1: Calibrated parameters

Description Value
ε elasticity of substitution in consumption 0.2
ρ correlation of cost differences 0.4
µ1, µ2 mean of cost distribution (-0.01, 0.53)
σ2

1, σ
2
2 variance of cost distribution (0.03, 0.30)

η elasticity of substitution in production 0.3 0.6 1.4 1.7
cL non-homotheticity term in L 0.0445 0.0036 458.38 36.887
cH non-homotheticity term in H 0.0717 0.0058 738.19 59.404
aL weight on L 0.0916 0.0916 0.0916 0.0916
aH weight on H 0.9076 0.9076 0.9076 0.9076

Notes: The top panel shows calibrated parameters that are common across all values of the elasticity
of substitution in production (η), whereas the bottom panel shows the parameters that vary with η for
selected values.

Table 1 contains all the calibrated parameters of the model for selected (but for

sake of readability not all) values of the elasticity of substitution in production. These,

it would not affect the sector-occupation cell productivities, neither their decomposition into various
components, nor the results from the baseline model.
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together with the evolution of the αs as backed out from the data fully specify the

calibrated model.

It is important to note that the occupational wages and the sectoral income shares

are only matched by the model in the initial and final period; in between they are

not matched, i.e. also the occupational labor income shares and relative prices are not

perfectly matched, as these were not targeted in the calibration. However, the model

does reasonably well in matching these statistics in all periods, see Figures 5b and 7

(for η = 0.6).

4 Factor model decomposition

We set up a factor model to decompose the productivity growth of sector-occupation

specific productivities – identified in the previous section – to a sector, an occupation,

and a neutral component, as well as a residual. In particular we regress the log differ-

ence in the cell productivities, defined as ∆ lnαoJ,t = lnαoJ,t−lnαoJ,t−1 on a (potentially

time-varying) sector effect (γJ,t), an occupation effect (δo,t), and a time effect (βt) in the

following way

∆ lnαoJ,t = βt + γJ,t + δo,t + εoJ,t, (17)

where we use weights ωoJ,t to reflect the relative importance of the sector-occupation

cell. In our baseline specification we use the average labor income share of each cell

between period t − 1 and t.13 The sector effect γJ,t captures sector-wide innovations

that affect the labor productivity of all workers in that sector equally regardless of their

occupation. Productivity changes that are common to workers of a given occupation,

but are independent from the sector, are assigned to δo,t. Productivity changes com-

mon to all cells are captured by βt, which can be interpreted as technological advances

due to general purpose technologies, whereas εoJ,t is the residual reflecting produc-

tivity changes idiosyncratic to workers in a sector-occupation cell. The sector dummy

that is omitted from the regression is the one for the low-skilled service sector and the

13To be precise, we use as weights ωoJ,t = (ΨJ,tθoJ,t + ΨJ,t−1θoJ,t−1)/2, where the values are given
in Appendix Table 4. The results are very robust to alternatives, such as using employment shares, or
using year t− 1 or year t shares, rather than averages.
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omitted occupation dummy is the manual one. The estimated coefficients are there-

fore productivity growth rates of the sector-occupation cells relative to the one formed

by the goods sector and manual occupation.

All factors together predict the following productivity series:

l̂nαoJ,0 = lnαoJ,0,

l̂nαoJ,t = l̂nαoJ,t−1 + β̂t + γ̂J,t + δ̂o,t. (18)

This productivity series contains both the sector- and the occupation-components. Its

difference from the actual productivity series is due to the productivity component

that is specific to the sector-occupation cell, εoJ,t. From now on we refer to this series

as the ‘full factor’ prediction.

To gauge how much of the variation in cell productivities the sector- and occupation-

specific components explain jointly, we calculate the R2 of this prediction. We also

want to quantify the importance of the sector and the occupation component sepa-

rately. To do this we generate a sector-only productivity series, where on the one

hand we shut down all cell-level productivity growth differences that come from the

occupation-component, on the other hand we keep the average growth stemming

from the occupation-component to ensure that overall growth is in line with the data.

We therefore generate the following ‘sector-only’ productivity series, where within a

sector productivity growth is the same for all occupations:

l̂nα
sec

oJ,0 = lnαoJ,0,

l̂nα
sec

oJ,t = l̂nα
sec

oJ,t−1 + β̂t + γ̂J,t +
ωr,tδ̂r,t + ωa,tδ̂a,t
ωm,t + ωr,t + ωa,t

, (19)

where ωõ,t =
∑

J̃ ωõJ̃ ,t. Across sectors cell productivity growth can differ only due

to γ̂J,t, the sector-specific component, as ωr,tδ̂r,t+ωa,tδ̂a,t
ωm,t+ωr,t+ωa,t

is the same for all cells and ef-

fectively acts like a neutral productivity growth component.14 An alternative would

be to run a naive factor model with only time and sector dummies, and construct the

14Notice that ωm,tδ̂m,t does not appear in the numerator. This is because the omitted occupation is
the manual one, hence there is no δ̂m,t; it is subsumed in the time effect β̂t.
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sector-only productivity component from it. This method however, by a priori restrict-

ing productivity growth to be biased only across sectors, would also pick up some of

the differences in growth rates across occupations as sectors use occupations at dif-

ferent intensities. Therefore it would not be informative about the true sector-specific

component of cell level productivity growth. We show the results of such a factor

decomposition, which we refer to as ‘naive’, in Appendix A.5.

Similarly we generate an ‘occupation-only’ productivity series as:

l̂nα
occ

oJ,0 = lnαoJ,0,

l̂nα
occ

oJ,t = l̂nα
occ

oJ,t−1 + β̂t + δ̂o,t +
ωG,tγ̂G,t + ωH,tγ̂H,t
ωL,t + ωG,t + ωH,t

, (20)

where ωJ̃ ,t =
∑

õ ωõJ̃ ,t. The last term assigns the average year-t sector component

across all cells, and thus shuts down differences in cell productivity growth across

sectors within occupations, while ensuring that overall growth is in line with the data.

Finally, we generate a ‘neutral’ productivity change series as:

l̂nα
neut

oJ,0 = lnαoJ,0, (21)

l̂nα
neut

oJ,t =l̂nα
neut

oJ,t−1 + β̂t +
ωr,tδ̂r,t + ωa,tδ̂a,t
ωm,t + ωr,t + ωa,t

+
ωG,tγ̂G,t + ωH,tγ̂H,t
ωL,t + ωG,t + ωH,t

,

where besides the time effect β̂t we also include the average occupation and the av-

erage sector component. This technological change affects all cells equally, i.e. it is a

neutral technological change.

We can use these predictions to evaluate the quantitative importance of each factor.

Table 2 shows how much of the change in cell productivities is explained by each fac-

tor for various values of the elasticity of substitution between different occupations,

η.15 This table shows the R2 of the factor model regression (17) in the first column for

a range of η values. The explanatory power of sector- and occupation-specific compo-

15The αs themselves change as we back out cell productivities conditional on the value of the elas-
ticity, but it is important to bear in mind that this series is independent of any other part of the model.
A different η implies a different parametrization of the household side to match the 1960 and 2010 data
(see the various columns in the lower panel of Table 1), but that part of the model does not affect the
analysis of cell productivities.
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η full factor sector occupation neutral
0.1 0.806 0.307 0.486 0.047
0.2 0.791 0.249 0.527 0.040
0.3 0.776 0.192 0.571 0.033
0.4 0.763 0.140 0.616 0.025
0.5 0.752 0.094 0.661 0.018
0.6 0.744 0.060 0.703 0.012
0.7 0.739 0.038 0.742 0.007
0.8 0.738 0.032 0.773 0.003
0.9 0.741 0.041 0.797 0.001
1.1 0.759 0.100 0.819 0.001
1.2 0.771 0.145 0.817 0.003
1.3 0.785 0.196 0.808 0.006
1.4 0.800 0.251 0.795 0.010
1.5 0.815 0.307 0.777 0.015
1.6 0.829 0.362 0.757 0.020
1.7 0.843 0.414 0.736 0.024
1.8 0.856 0.464 0.714 0.029
1.9 0.869 0.510 0.692 0.034

Table 2: R2 of the decomposition

nents jointly is between 74 and 87 percent, implying that between 13 and 26 percent

of the variation is due to effects idiosyncratic to the sector-occupation cell. The sec-

ond and the third column show the variation in cell productivity changes explained

by the sector-only and respectively by the occupation-only component, while last col-

umn shows the variation explained by neutral technological progress. The occupation

component is the most important, followed by the sector component, while the neu-

tral component has the lowest explanatory power. Goos et al. (2014), estimate, Duer-

necker and Herrendorf (2016) and Lee and Shin (2017) calibrate the elasticity of sub-

stitution to be between 0.5 and 0.9. In this range, our decomposition shows that 24-25

percent of cell productivity growth is idiosyncratic to the sector-occupation cell, 66-

80 percent can be attributed to the occupation-specific component, 3-9 percent to the

sector-specific component, while 0-2 percent of productivity growth is neutral. Our in-

terpretation of this decomposition is that most productivity changes are biased across

occupations, across sector-occupation cells, and to some extent also across sectors.16

16We also have conducted this decomposition using Current Population Survey (CPS) data over
1968–2016. The overall explanatory power of the full factor model is smaller in that dataset, but in
terms of the role of the sector and the occupation components the results are very similar. We prefer to
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When evaluating the explanatory power of the sector-only and the occupation-

only predictions, it is important to bear in mind that the series in (19) and (20) are not

equivalent to the predictions of a factor model with a time and a sector or respectively

a time and an occupation component only.17 As already mentioned, those productivity

series would pick up differential productivity growth across sectors (or occupations)

that originates from the sectors using occupations at different intensities (or the occu-

pations being used at different intensities across sectors).18
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Figure 2: Baseline and counterfactual cell productivity

In section 5 we study the role of these components in the evolution of various out-

comes. For now we illustrate, in Figure 2, the path of cell productivities as extracted

use the Census for our analysis as it starts earlier, is a larger dataset, and occupational codes have been
harmonized in previous studies (Autor and Dorn (2013) and Bárány and Siegel (2018)). The CPS results
are available on request.

17Since the sector-only and the occupation-only productivity series are not generated as partial pre-
dictions, their R2 are not limited by that of the full factor model.

18The R2 from such factor models carry information on how much of the cell productivity growth
could be captured by ’naive’ models, which ignore the potential existence of the sector or of the occu-
pation component and load them on the respective other component. Table 5 in the Appendix shows
these values.
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from the data, as well as the different predicted productivities based on the factor

model for η = 0.6. Note however, that as the extracted αs themselves change with η,

so do the different components and their explanatory power. The red solid lines show

the baseline cell productivities, while the counterfactual cell productivity series are the

following: the green solid lines are based on the sector and the occupation components

(l̂nαoJ,t), the blue dashed lines are based on the differences in the sector components

only (l̂nα
sec

oJ,t), while the yellow dashed-dotted lines are based on the occupation com-

ponents only (l̂nα
occ

oJ,t). For this value of η the figure shows that the full factor and the

occupation-only predictions are quite close to each other and to the baseline, whereas

the sector-only predictions are further away. This is reflected in the R2, for η = 0.6 the

occupation-only and the full factor are both around 70 percent, whereas the R2 of the

sector-only component is only 6 percent.

5 Model vs data: the role of sector- and occupation-components

In this section we quantify the role of the different components of cell productivity

growth on various outcomes of interest. Using the baseline cell productivities in our

model and comparing the generated paths to those observed in the data informs us

of how good the model is in describing the evolution of the economy. By feeding in

the various counterfactual cell productivities generated from the decomposition in the

previous section, we aim to measure the importance of the different components of

productivity growth. The predictions from the full factor model (as in (18)) relative to

the baseline allow us to measure the importance of the productivity growth compo-

nent that is idiosyncratic to the cell, captured by εoJ,t in the factor model (17).

By contrasting the predictions based on the sector-only component (as in (19)) with

those of the full factor model we can measure the importance of productivity growth

differences across occupations within a sector. It is worth to reiterate that the sector-

only component is the part of cell productivity growth that is not originating from

any differential change in productivities at the occupation or at the cell level. Even

though sectors might differ (and indeed they do in the data) in the intensities at which

they use particular occupations, this sector-only component will not pick up differ-
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ential productivity across occupations, but is a measure of productivity growth after

controlling for occupation effects.

Conversely, contrasting the predictions based on the occupation-only component

(as in (20)) with those of the full factor model allows us to infer the role of productiv-

ity growth differences within occupations across sectors. Similarly to the sector-only

component, the occupation-only component we construct does not pick up differen-

tial productivity growth across occupations that originates from them being used at

intensities that vary across sectors.

5.1 Overall fit for different production elasticities

In this section we calculate for various outcomes the mean squared distance between

the observed changes in the data and the model (under different cell productivity se-

ries) relative to the variance of the changes in the data, for a whole range of production

elasticities.19 This measure, while imperfect, summarizes the goodness of fit in a sin-

gle number which can be easily compared across the alternative models and across

different values of the elasticity of substitution in the production function. A value of

zero implies a model that perfectly fits the data, and a larger value implies that model

predictions are further away from the data.

We calculate the distance measure of the various models for a wide range of pro-

duction elasticities, η ∈ [0.1, 1.9].20 Since there is no consensus about the value of this

elasticity in the literature, we evaluate the role of the different components for vari-

ous values. In what follows it becomes clear that some findings are extremely robust

across different values of η, while for others whether η is larger than a certain value

seems to be important.

19More precisely we define our distance measure as:∑
k

∑2010
t=1960(∆xdk,t −∆xmk,t)

2∑
k

∑2010
t=1960(∆xdk,t −∆xd)2

≥ 0,

where ∆xik,t = xik,t − xik,1960, i = d denotes the data, and i = m denotes the model prediction. The
squared distance and variance is calculated for occupational measures pooled across k = {m, r, a}, for
sectoral outcomes across k ∈ {L,G,H}, and for cell outcomes across all 9 cells k ∈ {m, r, a}×{L,G,H}.

20As discussed in section 3.2, we do not consider the case of η = 1 since in this case the implied
occupational income shares within sectors would be constant over time which is at odds with the data
and invalidates our identification of baseline cell productivities.
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Figure 3: Productivity components’ ability to replicate the data

The first thing to note in Figure 3 is that our baseline model does very well in

matching the data. It is important to recall that we extracted the baseline productiv-

ities from the data using the production side of our model, taking as given the evo-

lution of occupational wages and employment, and sectoral labor income shares. We

then calibrated the time-invariant parameters of the model to match these values in

the initial and final period perfectly. However, in the interim periods there could be

differences between the model and the data. These differences turn out to be small for

almost all outcomes of interest, as the distance measure is basically zero for all values

of η, implying that our baseline model matches the data almost perfectly in all periods.

This is not the case for occupational wages, where our baseline model’s predictions in

the interim periods deviate from the data. Our model’s failure to match these paths

can be understood by looking at Figure 4b below, where the dark gray solid line shows

the data and the red solid line the values predicted by our baseline model (for η = 0.6).

The data, as our model, displays a strong upward trend in both manual and abstract
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wages relative to routine. In the data, however the 1980 values of these relative wages

seem to be outliers, which might correspond to the compression of the skill premium

during the 1970s. Our model stays silent about what generated these.

The second thing to note is that the model based on the productivity growth pre-

dictions of the full factor model does almost as well as our baseline model. The only

difference between these two models is that the latter does not contain the productiv-

ity growth that is idiosyncratic to the sector-occupation cell. The fact that these two

models perform equally well for occupational employment and wages, for sectoral

employment and for sectoral prices (except for values of η close to 1) implies that the

productivity growth component idiosyncratic to the cell is not the key driver of these

outcomes. This is not the case for cell employment shares (loJ ) and for occupational

income shares within sectors (θoJ ). Comparing the distance measure of the baseline

and of the full factor model, it is clear that productivity growth that is idiosyncratic to

the cell plays an important role in generating the path of these in the baseline model

and hence in the data. We return to this in the next subsection.

The picture is less clear in terms of the role of the occupation-only and the sector-

only component of productivity growth. In particular, a different message emerges for

low values of η and for values of η close to and above 1. For low values of the elastic-

ity of substitution the model based on the occupation-only component of productivity

growth matches the predictions from the full factor model almost perfectly (and there-

fore it also matches the baseline model and the data very well). This suggests that

if the elasticity of substitution between occupations is low, the sectoral component of

productivity growth has almost no role except in the evolution of sectoral prices. Cor-

roborating this, Figure 3 also shows that the fit of the model based on the sector-only

component of growth is substantially worse than of all other models in terms of oc-

cupational employment and wages, and occupational income shares within sectors.

However, for higher values of η the distance measure of the model generated from

the occupation-only and from the sector-only component of productivity growth for

sectoral employment and prices and for cell employment are similar. This implies that

if η is relatively high, both the occupation and the sector component of productivity

growth play an important role in these outcomes. Finally, notice that for occupational
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income shares within sectors the distance of the full factor model and the occupation-

only component are virtually the same, implying that the sector component has a very

limited role in the evolution of θ.

Our results so far suggest that the ability of the sector-only or the occupation-only

component of cell productivity growth to explain the outcomes of interest, especially

sectoral employment and prices, depends on the production elasticity of substitution.

To better understand this dependence, we compute the average sectoral labor produc-

tivity growth implied by our model for each cell productivity series.21 Table 3 shows

these for various values of η for our benchmark model as well as for the constructed se-

ries from our decomposition. For reference we show in the last column annual sectoral

labor productivity growth calculated from BEA data. While we have not used these

productivity measures in the calibration of our model, the model predicted productiv-

ity growth rate for the goods and for the high-skilled service sectors are remarkably

close to the BEA values. However, in the low-skilled service sector there is a discrep-

ancy between the productivity growth implied by the model and the one measured

in the data. This difference is because we inferred productivity growth to match the

sectoral labor income shares calculated from the Census data, rather than to match

value-added shares from the BEA. These two series have diverged over the period of

our analysis.22 As the focus of our paper is to understand sectoral and occupational

labor market trends, we need data to distinguish not only the sector of workers, but

also their occupation therein. We therefore cannot use only BEA data, and we inform

our model calibration by the detailed data from the Census. In what follows we base

our discussion on the comparison of sectoral productivity growth from the baseline

model and the various counterfactuals.

As is well known, average productivity growth in the goods sector exceeds the

one in the (two types of) service sectors according to the BEA data. This also holds

in our baseline model, which predicts for all values of η the same sectoral average

21To be precise, we define sector J ’s labor productivity in period t as YJ,t
lmJ,t+lrJ,t+laJ,t

, compute its
growth over 1960–2010 and report the annualized rate in Table 3.

22While we do not aim at explaining this divergence between income shares from the Census and
value added shares in the BEA data, possible explanations for this might be sectoral differences in
the labor share of income (i.e. differences in capital intensity across sectors), or differences in the gap
between hourly wages and hourly labor costs, both of which might possibly vary over time.
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Table 3: Implied sectoral average labor productivity growth (in percent)

η 0.3 0.6 1.4 1.7 BEA
baseline

L 2.23 2.23 2.23 2.23 0.89
G 2.30 2.30 2.30 2.30 2.53
H 1.11 1.11 1.11 1.11 1.36

full factor
L 2.11 1.99 2.53 2.41 0.89
G 2.36 2.38 2.30 2.32 2.53
H 1.14 1.18 0.97 1.01 1.36

sector component
L 2.06 1.91 2.63 2.48 0.89
G 1.86 1.50 3.19 2.82 2.53
H 1.46 1.82 0.15 0.51 1.36

occupation component
L 1.79 1.82 1.65 1.69 0.89
G 2.25 2.62 0.88 1.25 2.53
H 1.42 1.11 2.58 2.27 1.36

growth rates. The model based on the full factor productivities robustly predicts that

goods sector productivity growth is faster than high-skilled services, but the magni-

tude of the difference depends on the elasticity of substitution. Nonetheless it seems

that the higher goods sector productivity growth is not driven by productivity com-

ponents that are idiosyncratic to the sector-occupation cell. Our exercise can shed

light on the origin of the higher labor productivity growth in the goods sector. It al-

lows us to disentangle whether it is driven by the sector-specific component of cell

productivity growth or whether it is driven by productivity components specific to

individual occupations which are used at different intensities across sectors. Our re-

sults suggest that as long as occupations are complements in production, i.e. if η < 1,

the occupation-component of productivity by itself implies that the goods sector has

a higher productivity growth than the two types of services, for instance because it

uses routine-labor most intensively and technological change is routine-biased. In fact

in this range of the elasticity, the sector-specific component of productivity growth in

goods might not even be the highest amongst all sectors. Conversely, if η > 1 the roles

are reversed and the sector-only component is the driver behind the observed differ-

ences in sectoral productivity. However, η < 1 seems more plausible, as occupations
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are in general characterized by different tasks which are believed to be complements

to each other. In this case our results suggest that the observed technological change

that is biased at the sector level23, is in fact the outcome of productivity changes at the

occupation level (as for instance argued by Duernecker and Herrendorf (2016)).

Given that from our distance measure, as long as it is not equal to zero, it is im-

possible to ascertain whether cell-productivity differences stemming solely from the

sector-component, or solely from the occupation-component, or ignoring only the

component idiosyncratic to the cell generate patterns qualitatively in line with the

data. In the next section we show the predicted time path from our baseline model

and the three counterfactual models against the data for one particular value of η. It is

also worth noting that the conclusions we have drawn about the various productivity

components’ distance measure with respect to the various model outcomes is robust to

alternative values of the elasticity of substitution in production (ε) and the correlation

in the cost differences (ρ); see Appendix A.4.

5.2 Over time fit for a specific production elasticity

To illustrate in greater detail how each component of productivity affects the various

model outcomes over time, we now fix the elasticity of substitution across occupa-

tional labor inputs. We set this parameter to η = 0.6 for two reasons. First, the liter-

ature typically assumes that the various occupations are complements to each other

in production implying a value less than one, and this value is in the range used in

previous literature.24 The second reason for focusing on η = 0.6 is that it is around this

value of the elasticity that the distance measure of the occupation-only model starts

to diverge from that of the full factor model, especially in sectoral employment and

prices, and hence analyzing the evolution of the various models for this value might

23This has been suggested to be the driver of the cost disease of services (e.g. Baumol (1967)) and
structural change across sectors (e.g. Ngai and Pissarides (2007)).

24To our knowledge the only estimate of this elasticity is in Goos et al. (2014), who estimate it to
be 0.53, 0.66, and 0.8 depending on the specification and the sample of countries; it is worth to note,
however, that they estimate in partial equilibrium not taking into account aggregate effects. Duernecker
and Herrendorf (2016) calibrate a value of 0.56, while Lee and Shin (2017) calibrate a value of 0.704 for
this same parameter, though with a different set of occupations. The papers which introduced task
biased technical change typically assume a Cobb-Douglas production function, i.e. an elasticity of 1 for
simplicity (Autor, Levy, and Murnane (2003), Acemoglu and Autor (2011), Autor and Dorn (2013)).
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be more informative than for a very low value of η.
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Figure 4: The evolution of occupational outcomes

Figures 4–7 show the evolution of the data in solid gray, contrasted with the econ-

omy’s evolution for the various productivity paths color coded as before.25 These fig-

ures confirm what the distance measures in Figure 3 showed. The baseline model’s

predictions are extremely close to the data except for occupational relative wages,

where they do not pick up the drastic drop in the 1980 values. Figure 4 shows (i)

that the predictions of the full factor and the occupation-only models are very close to

each other and to the data for all occupational outcomes, and (ii) that while the sector-

only model’s predictions are qualitatively in line with the data, quantitatively they fall

short. Figure 5 shows (i) that the full factor model does almost as well as our baseline

model, (ii) that for sectoral employment both the occupation-only and the sector-only

models are qualitatively and quantitatively close to the data, and (iii) that for sectoral

prices neither the occupation-only nor the sector-only model does very well.

Figure 6 shows the predicted evolution of employment shares by sector-occupation
25The baseline cell productivities in solid red, the full factor model predictions in solid green, the

dashed blue are based on the sector-only components, and the dashed-dotted yellow lines are generated
from the occupation-only components.
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Figure 5: The evolution of sectoral outcomes

cells. While all counterfactual cell productivities lead to outcomes that are similar to

the data, the evolution of cell employment shares are furthest away in the case of

sector-only cell productivities. For this value of η, the predictions of the occupation-

only and the full factor model are very close to each other, but there is a gap be-

tween their predictions and the data for some cells. This implies that the idiosyncratic

cell productivities play an important role in the evolution of cell employment shares,

which is also reflected in Figure 3, where the distance measure for cell employment is

bounded away from zero for all counterfactual cell productivities and for all values of

η.

Figure 7 shows the predicted changes in labor income shares within sectors. This

figure shows that the sector-only component predicts hardly any change in the θs. This

can be understood from equations (22) and (23) in the Appendix: labor income shares

change if relative occupational wages or relative cell productivities within a sector

change. The sector-only model shuts down the second channel, and predicts quanti-

tatively small changes in relative occupational wages, thus implying changes in the θs
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Figure 6: Cell employment shares

that are in line with the data, but which are quantitatively very small. Furthermore,

in terms of the other counterfactual cell productivities the message is similar to Figure

6: the full factor model and the occupation-only component get the general patterns

right, but there is a gap between the full factor and the baseline model/data pointing

to the importance of the cell-specific productivity component. These predictions are

reflected in Figure 3; while the distance measure for θ of the sector-only model is quite

far from zero for all values of η, the full factor and occupation-only models are also

bounded away from zero, implying that productivity changes idiosyncratic to the cell

are important for changes in occupational labor income shares within sectors.

6 Conclusion

In this paper we propose a novel approach to infer and study the nature of potentially

non-neutral technological change. We set up a parsimonious yet flexible model which

we use to extract sector-occupation cell productivities from observed changes in labor
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Figure 7: Income shares within sectors

income shares, sectoral prices and overall GDP growth over time.

We use a factor model on the extracted cell productivities to quantify to what de-

gree technological change is biased across occupations and across sectors. For rea-

sonable values of the production elasticity we find that 24-25 percent of the change

in cell productivities is due to factors specific to the sector-occupation cell, i.e. is not

driven by either sector- or occupation-specific factors. Within the about 75 percent of

variation that the full factor model explains, the relative magnitude of the sector and

the occupation component is quite sensitive to η (the lower η the more important the

sector component), however, the occupation component’s role is robustly larger.

To understand what each of these components imply for various outcomes of in-

terest, we feed these as counterfactual productivity series into the model. While we

see that sector and occupation productivity components by themselves generate occu-

pational employment and wage, as well as sectoral employment paths qualitatively in

line with the data, quantitatively the occupation component gets much closer. More-

over we find that the occupation component and the cell-specific elements are impor-
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tant drivers of the occupational income shares within sectors and employment shares

at the cell level. However both sector and occupation components are needed to ex-

plain the evolution of sectoral prices over time.

Overall, we infer that productivity growth is biased along both the occupational

and the sectoral dimension. The occupation component goes a long way in explaining

the reallocations across sectors and occupations. However, to understand the full pic-

ture of the evolution of prices, wages and employment not only across but also within

sectors and occupations, models should allow for technologies to evolve at the sector-

occupation cell level. While our model does not allow for any frictions and therefore

does not warrant any policy interventions, the finding that virtually all of labor market

outcomes are explained by the occupation component suggests that if policymakers

wanted to respond to the observed reallocations, they should not focus on industrial

policies but consider active labor market policies, including training programs.
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A Appendix

A.1 Classification

Occupations are classified as:

1. Manual: low-skilled non-routine

housekeeping, cleaning, protective service, food prep and service, building, grounds

cleaning, maintenance, personal appearance, recreation and hospitality, child

care workers, personal care, service, healthcare support

2. Routine

farmers, construction trades, extractive, machine operators, assemblers, inspec-

tors, mechanics and repairers, precision production, transportation and material

moving occupations, sales, administrative support, sales, administrative support

3. Abstract: skilled non-routine

managers, management related, professional specialty, technicians and related

support

Industries are classified into sectors in the following way:

1. Low-skilled services: personal services, entertainment, low-skilled transport (bus

service and urban transit, taxicab service, trucking service, warehousing and

storage, services incidental to transportation), low-skilled business and repair

services (automotive rental and leasing, automobile parking and carwashes, au-

tomotive repair and related services, electrical repair shops, miscellaneous repair

services), retail trade, wholesale trade

2. Goods: agriculture, forestry and fishing, mining, construction, manufacturing

3. High-skilled services: professional and related services, finance, insurance and

real estate, communications, high-skilled business services, communications, util-

ities, high-skilled transport , public administration
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Figure 8 shows the share of hours worked in each of the three sectors and also in

each sector-occupation cell between 1960 and 2010 in the US. This figure demonstrates

the patterns we described in the introduction.
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Figure 8: sector-occupation hours worked shares 1960-2007
Notes: The data is taken from IPUMS US Census data for 1960, 1970, 1980, 1990, 2000 and the American
Community Survey (ACS) for 2010. For three broad sectors, low-skilled services (L), goods (G) and
high-skilled services (H) and three occupational categories (manual, routine, abstract), this figure plots
the evolution of the share of hours supplied in sector-occupation cells, as well as in sectors in the US
between 1960–2010. The dark grey lines show the share of hours supplied in each sector, which are
broken down into occupations within the sector in each panel.

A.2 Derivations

In this subsection we show how the αs can be a expressed as a function of observables.

The labor income shares of different occupations within a sector pin down the αs
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within a sector. To see this multiply (2) with wm/wr and (3) with wa/wr to get:

θmJ
θrJ

=

(
wr
wm

)η−1(
αmJ
αrJ

)η−1

, (22)

θaJ
θrJ

=

(
wr
wa

)η−1(
αaJ
αrJ

)η−1

. (23)

Re-arrange to get:

αmJ
αrJ

=

(
θmJ
θrJ

) 1
η−1 wm

wr
,

αaJ
αrJ

=

(
θaJ
θrJ

) 1
η−1 wa

wr
.

The relative prices across sectors pin down the relative αs across sectors. To see this,

use (4) for sectors J and K to get:

pJ
pK

=
αmK
αmJ

 1

wη−1
m

+
(
αrJ
αmJ

)η−1
1

wη−1
r

+
(
αaJ
αmJ

)η−1
1

wη−1
a

1

wη−1
m

+
(
αrK
αmK

)η−1
1

wη−1
r

+
(
αaK
αmK

)η−1
1

wη−1
a


1

1−η

.

Using the above expressions on the relative αs within sector and re-arranging we get:

αmJ
αmK

=
pK
pJ

(
θmK
θmJ

) 1
1−η

.

The growth rate of the economy pins down the evolution of the αs over time. First,

note that we express the evolution of cell productivities over time conditional on the

sectoral income shares. The sectoral income shares, using equations (5), (6) and (7),

can be expressed as:

ΨG

ΨH

=
pGYG
pHYH

=
lmGp

1−η
G wηmα

1−η
mG

lmHp
1−η
H wηmα

1−η
mH

,

ΨL

ΨH

=
pLYL
pHYH

=
lmLp

1−η
L wηmα

1−η
mL

lmHp
1−η
H wηmα

1−η
mH

.
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Re-arranging and using the above expressions to substitute out αmJ/αmK :

lmG
lmH

=
ΨG

ΨH

(
pH
pG

)1−η (
αmH
αmG

)1−η

=
ΨG

ΨH

θmG
θmH

,

lmL
lmH

=
ΨL

ΨH

(
pH
pL

)1−η (
αmH
αmL

)1−η

=
ΨL

ΨH

θmL
θmH

.

Using that lmL + lmG + lmH = lm, we can express

lmH =
lm

ΨL
ΨH

θmL
θmH

+ ΨG
ΨH

θmG
θmH

+ 1
.

We can express sector-H price as a function of observables by plugging (22) and (23)

into (4), and using that the θs sum to 1 within sector:

pH =

[(
αmH
wm

)η−1

+

(
αrH
wr

)η−1

+

(
αaH
wa

)η−1
] 1

1−η

=
wm
αmH

(
1

θmH

) 1
1−η

.

Similarly using (2), (3) and relative αs within sectors as expressed above, as well as

that within sectors the θs sum to 1, sectoral output can be expressed as:

YL =
[
(αmLlmL)

η−1
η + (αrLlrL)

η−1
η + (αaLlaL)

η−1
η

] η
η−1

= αmLlmL

[
1 +

(
αrLlrL
αmLlmL

) η−1
η

+

(
αaLlaL
αmLlmL

) η−1
η

] η
η−1

= αmLlmL

(
1

θmL

) η
η−1

= αmH
pH
pL

(
θmH
θmL

) 1
1−η
(

1

θmL

) η
η−1

lmH
ΨL

ΨH

θmL
θmH

= αmH lmHθ
η

1−η
mH

pH
pL

ΨL

ΨH

,

YG = αmH lmHθ
η

1−η
mH

pH
pG

ΨG

ΨH

,

YH = αmH lmHθ
η

1−η
mH .

Using the above and the expressions for pH and lmH we can then write the value of

output at current prices as:

pLYL + pGYG + pHYH = wmlm

ΨL
ΨH

+ ΨG
ΨH

+ 1
ΨL
ΨH
θmL + ΨG

ΨH
θmG + θmH

.

We can express the value of output at initial prices, where we denote by 0 the initial
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period and we omit the subscript t in all other periods for brevity, as:

pL,0YL + pG,0YG + pH,0YH

=
αmH
αmH,0

wm,0

(
θmH
θmH,0

) 1
1−η lmL

ΨL
ΨH
θmL + ΨG

ΨH
θmG + θmH

(
pL,0
pH,0

ΨL

ΨH

pH
pL

+
pG,0
pH,0

ΨG

ΨH

pH
pG

+ 1

)
.

The equivalent of output growth in our model is:

1 + γ =
pL,0YL + pG,0YG + pH,0YH

pL,0YL,0 + pG,0YG,0 + pH,0YH,0
.

The evolution of αmH over time is therefore pinned down by:

αmH
αmH,0

=
(1 + γ)(

θmH
θmH,0

) 1
1−η lm

lm,0

ΨL,0
ΨH,0

θmL,0+
ΨG,0
ΨH,0

θmG,0+θmH,0

ΨL
ΨH

θmL+
ΨG
ΨH

θmG+θmH

pL,0
pH,0

ΨL
ΨH

pH
pL

+
pG,0
pH,0

ΨG
ΨH

pH
pG

+1

ΨL,0
ΨH,0

+
ΨG,0
ΨH,0

+1

.

A.3 Calibration

Table 4 contains the targets used in the calibration.

Table 4: Calibration targets

1960 1970 1980 1990 2000 2010
pL/pG 1 1.153 0.914 0.977 1.019 1.036
pH/pG 1 1.145 1.014 1.449 1.880 1.951
ΨL 0.215 0.234 0.234 0.250 0.261 0.252
ΨG 0.472 0.410 0.375 0.315 0.275 0.215
ΨH 0.312 0.356 0.392 0.435 0.465 0.533
growth 1 1.229 1.420 1.657 1.973 2.389
wm/wr 0.800 0.850 0.801 0.849 0.861 0.893
wa/wr 1.191 1.199 1.082 1.265 1.358 1.444
θmL 0.130 0.115 0.129 0.135 0.154 0.178
θrL 0.648 0.633 0.635 0.609 0.547 0.502
θaL 0.222 0.251 0.236 0.256 0.299 0.320
θmG 0.012 0.018 0.019 0.020 0.019 0.078
θrG 0.790 0.752 0.744 0.672 0.641 0.562
θaG 0.199 0.230 0.237 0.308 0.340 0.360
θmH 0.095 0.099 0.103 0.091 0.089 0.120
θrH 0.481 0.414 0.387 0.331 0.270 0.233
θaH 0.424 0.486 0.510 0.578 0.641 0.647
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A.4 Robustness checks under alternative parameters

Here we explore the role of alternative values of ρ and ε. Note that these parame-

ters do not change the productivity series we infer from the data, as the αs are fully

pinned down by the production side of the model. However, these parameters impact

the general equilibrium outcomes of the model. In each of these robustness checks

we recalibrate the model based on the alternative values of the fixed parameters we

consider.

We show in Figure 9 a sensitivity analysis with respect to ρ, the correlation in the

cost differences of entering an occupation. Comparing the sub figures, for no corre-

lation and ρ = 0.6 respectively, and Figure 3 in the main text, where ρ = 0.4, reveals

that the model predictions are extremely robust with respect to this parameter; there

is hardly any difference between the figures.
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(a) Distance measure for ρ = 0
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(b) Distance measure for ρ = 0.6

Figure 9: Sensitivity Analysis with respect to ρ
This figure plots the distance measure for the various outcomes of interest for alternative parameteri-
zations of the correlation in the occupational choice costs. The baseline value in the main text is ρ = 0.4
for which these distance measures are shown in Figure 3.

Similarly Figure 10 shows the distance measures of model outcomes for alternative

values of the elasticity of substitution in consumption. Comparing the various sub-

panels where ε is set to 0.1, 0.3, 0.4 to each other and to Figure 3 which shows the

baseline parametrization based on ε = 0.2 shows that the model predictions are very

robust to this preference parameter.
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(a) Distance measure for ε = 0.1

0

0.2

0.4

0.6

0.8

1
occupational employment

0.1 0.5 0.91.1 1.5 1.9

0.4

0.6

0.8

1

1.2

1.4
occupational wages

0.1 0.5 0.91.1 1.5 1.9

0

0.2

0.4

0.6

0.8

1
sectoral employment

0.1 0.5 0.91.1 1.5 1.9

0

5

10

15

20
sectoral prices

0.1 0.5 0.91.1 1.5 1.9
0

0.2

0.4

0.6

0.8

1

0.1 0.5 0.91.1 1.5 1.9
baseline sector occupation sector+occupation

0

0.2

0.4

0.6

0.8

1
cell employment

0.1 0.5 0.91.1 1.5 1.9

0.1 0.5 0.91.1 1.5 1.9

0

0.2

0.4

0.6

0.8

1
occupational employment

0.1 0.5 0.91.1 1.5 1.9

0.4

0.6

0.8

1

1.2

1.4
occupational wages

0.1 0.5 0.91.1 1.5 1.9

0

0.2

0.4

0.6

0.8

1
sectoral employment

0.1 0.5 0.91.1 1.5 1.9
0

5

10

15

20
sectoral prices

0.1 0.5 0.91.1 1.5 1.9

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.5 0.91.1 1.5 1.9

0

0.2

0.4

0.6

0.8

1
cell employment

baseline sector occupation sector+occupation

(b) Distance measure for ε = 0.3
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(c) Distance measure for ε = 0.4

Figure 10: Sensitivity Analysis with respect to ε
This figure plots the distance measure for the various outcomes of interest for alternative parametriza-
tions of the consumption elasticity of substitution. The baseline value in the main text is ε = 0.2 for
which these distance measures are shown in Figure 3.
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A.5 Results based on the naive decomposition

We generate alternative cell productivity paths which are based on partial predictions.

In particular the sector-only productivity series is generated as:

l̃nα
sec

oJ,0 = lnαoJ,0,

l̃nα
sec

oJ,t = l̃nα
sec

oJ,t−1 + β̂t + γ̂J,t +
ωrJ,tδ̂r,t + ωaJ,tδ̂a,t
ωmJ,t + ωrJ,t + ωaJ,t

,

and the occupation-only productivity series is generated as:

l̃nα
occ

oJ,0 = lnαoJ,0,

l̃nα
occ

oJ,t = l̃nα
occ

oJ,t−1 + β̂t + δ̂o,t +
ωoG,tγ̂G,t + ωoH,tγ̂H,t
ωoL,t + ωoG,t + ωoH,t

.

The difference to the main text is that we use the actual cell weights when assigning

the average occupation(sector) effect to the sector-(occupation-)only series.

factors full factor sector occupation neutral
η = 0.1 0.806 0.396 0.567 0.047
η = 0.2 0.791 0.337 0.599 0.040
η = 0.3 0.776 0.276 0.629 0.033
η = 0.4 0.763 0.215 0.657 0.025
η = 0.5 0.752 0.156 0.681 0.018
η = 0.6 0.744 0.103 0.699 0.012
η = 0.7 0.739 0.059 0.709 0.007
η = 0.8 0.738 0.026 0.712 0.003
η = 0.9 0.741 0.007 0.705 0.001
η = 1.1 0.759 0.006 0.670 0.001
η = 1.2 0.771 0.023 0.644 0.003
η = 1.3 0.785 0.049 0.614 0.006
η = 1.4 0.800 0.080 0.583 0.010
η = 1.5 0.815 0.116 0.552 0.015
η = 1.6 0.829 0.154 0.521 0.020
η = 1.7 0.843 0.193 0.491 0.024
η = 1.8 0.856 0.231 0.464 0.029
η = 1.9 0.869 0.268 0.438 0.034

Table 5: R2 of the alternative decomposition

Table 5 contains the R2 for the alternative predicted sector-only and occupation-

only productivity paths. These alternative productivity components are naive in the
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sense that they resemble the series one would have inferred when a priori restricting

the nature of productivity growth to be specific to sectors or to occupations only. For

comparison column 1 contains the R2 of the full factor model, and the last column

contains the R2 of the neutral productivity path, these are the same as the respective

columns of Table 2. In terms of the individual components’ relative importance, the

ranking is the same as in the main text: the R2 of the occupation-only component is

always substantially larger than the R2 of the sector-only component. However, the

exact magnitudes are somewhat different.
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Figure 11: Alternative productivity components’ ability to replicate the data

Figure 11 shows the distance measure between the data and the model using the

above defined alternative productivity components. There are two things to note re-

garding the difference to Figure 3. The first is that here the sector-only model almost
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perfectly replicates the data in terms of sectoral employment and relative sectoral

prices. This is because in the naive model we load some of the occupational productiv-

ity growth differences on the sector-only component, as occupations are being used at

different intensities in each sector. The second thing to note is that the performance of

the occupation-only component is hardly affected by using this alternative prediction

method.
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